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Abstract-A new approximate analytical method for studying mass and heat transfer problems is presented
which makes it possible to obtain simple algebraic equations for diffusion (thermal) flows and mean
Sherwood numbers. The problems are considered concerning convective mass transfer to a rotating disk,
longitudinally streamlined plate, a spherical droplet, and a solid particle in the course of volumetric reaction
the rate of which is arbitrarily dependent on concentration. Non-stationary mass exchange between a wall
and a motionless medium with simultaneous volumetric reaction of any order is studied. Heat and mass
transfer in a turbulent flow in the tube inlet section and other analogous problems are analysed.

1. INTRODUCTION

1.1. Introductory remarks

It 15 WELL known that the solution of linear ordinary
arbitrary order differential equations with constant
coefficients by the substitution of y = e (where y is
the dependent and x independent variables) is reduced
to the solution of algebraic equations of the same
order to determine the exponent 4.

Such an unambiguous correspondence between the
mentioned types of differential and algebraic equa-
tions suggested the possibility of trying to use similar
ideas for an approximate analysis of much more com-
plicated non-linear differential equations with vari-
abie coefficients.

The present paper proposes a very simple and effec-
tive approximate analytical method for studying lin-
ear and non-linear differential equations with variable
coefficients (as well as equations with partial deriva-
tives) which is based on the solution of auxiliary
algebraic equations with subsequent use of the pro-
cedure of asymptotic correction. An elementary tech-
nique is described which allows the above-mentioned
auxiliary algebraic equations for diffusion flows to be
derived mentally.

The suggested method for obtaining approximate
relations rests on a well-balanced logical foundation
(there exists a relationship between the algebraic
method and the combination of the Galerkin method
with that of asymptotic correction) and leads, in a
number of cases, to accurate results.

In view of simple and formalized principles of
actions, the algebraic method is essentially a sort of
‘approximate operational method’. It is well illus-
trated by the solution of different problems which are
of interest for the theory of mass and heat transfer,
chemical technology and physicochemical hydro-
dynamics.

1.2. The method of asymptotic correction

First, a modified version of the method of asymp-
totic correction will be described which will be further
employed to present the algebraic method.

Let the following expression be obtained for the
unknown value S:

S=o(p) M

which correctly reflects the qualitative behaviour of §
as a function of the change in the dominant parameter
p. The function ¢ is taken to be monotonous. Let
the main terms of the asymptotic expansion of the
approximate expression {1} in the limiting cases
p -0 and p— o have the form

pﬂO,S«rS{; prx, $—+S% @
where
&= S3p), 5% =SLip). 3

Here and after it is assumed that $%/S¥ # const.
If similar exact asymptotics of the initial problem
solution are known

p"’oysﬂso; p-—’mas"’sx (4)

then the approximate formula (1) can be improved by
the following simple means. Taking into account that,
according to equations (3), the asymptotics of the
approximate expressions of S§ and $* depend on
the parameter p, expression (1) can be given in the

following form:
S 5%
5= {E‘)

This equation no longer depends explicitly on p (the
substitution of the functions § = @(p), S = S¥(p),
S% = S%(p) from equations (1) and (3) reduces equa-
tion (5} to an identity).

&)
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a characteristic length scale (tube, radius,
radius of droplets, bubbles and solid
spherical particles)

C concentration in flow

C, concentration on the surface (of a disk,
tube, plate, particle, droplet, bubble)

C.  unperturbed concentration in a free
stream (at the tube inlet; at a distance
from a particle, droplet, bubble, disk)

c dimensionless concentration,

(Cp— O)(C,—C,); in problems with
volumetric reaction it should be assumed
that C,, = 0, which corresponds to

c=C/C,

¢ image of dimensionless concentration,
plyecdr

D coefficient of diffusion

F function determining the kinetics of

volumetric reaction, F(C) ; for the
Nth-order reaction F = CV¥

f(©) F(CO)/F(C,); for the Nth-order reaction
f=c
{f> fo f(c)dc; for the Nth-order reaction

Kfr=1N+1)

K constant of volumetric reaction rate (KF
is the rate of volumetric reaction)

k dimensionless constant of volumetric
reaction rate, a’KF(C,)/DC,; for the
Nth-order reaction k = a*KCY¥-'/D

NOMENCLATURE

Pe Peclet number, aU,/D

r dimensionless radial coordinate; r = 1

corresponds to the surface of a

spherical droplet, bubble and solid

particle

spherical system of coordinates with

origin fixed at the centre of a spherical

droplet, bubble and a solid particle

Sh  mean Sherwood number,

—3[% sin 6(3c/0r),.., d6

time

U, unperturbed flow velocity (at a distance
from a plate, droplet, bubble, particle)

X distance (to the surface of a disk, plate,

r,0

~

tube, wall)
X X/a.
Greek symbols
/] ratio of dynamic viscosities of droplet

and surrounding liquid (8 = 0
corresponds to a gas bubble; 8 = o0, to
a solid particle)

I'(e) gamma-function, y(«, c0)

(o, x) T'(0)~y(2x)

y(a, x) incomplete gamma-function,
fal*tedl

] boundary layer thickness

v kinematic viscosity of fluid

T dimensionless time, Dt/a>.

Now, with asymptotics (3) of the appropriate for-
mula (1) being substituted in expression (5) by the
corresponding asymptotics of an exact solution of
the initial problem (4), it is possible to obtain the
following formula :

S Sw

5-o(5) ®
which, besides being a correct qualitative description
of the quantity S, usually provides an accurate result

in the limiting cases p — 0 and p — oo (in contrast to
equation (1)). This is the essence of the method of

asymptotic correction.
Specifically, if asymptotics (3) have the form
S¢=4p°, SL=Bp (a#P (3a)

then the sought relation (6) can be presented as

S 1/4 Sm /{2~ ) A SQ 1/(p~a)
seiGe) e(GE)T) @

It is usually assumed that the structure of accurate
asymptotics S, and S is analogous to that of equa-
tion (3a) : the exponents a and f are the same, but the
coefficients 4 and B are different.

Figure 1 schematically illustrates the application of
the method of asymptotic correction when o = 0 and
B>0.

Similarly, instead of the explicit initial relation (1),
the implicit approximate relation G(S,p) = 0 can be
considered.

To illustrate the derivation of the sought function
@, equation (6), the following quadratic equation will
be considered (an example of implicit dependence)

a,S8*+pS+a, = 0. @)

At small p, equation (7) yields the ‘truncated’ equa-
tion

a,S¢*+a, =0 (p—0) (3
while at large p it gives for the growing asymptotic
aSe+p=0 (p— ). &)

Now, elimination of the parameters a, and p from
equation (7) with the aid of equations (8) and (9)

yields
52-S.8-8}=0 (10)

where the asterisk at the asymptotics of the quantity
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Asymptotic
‘correction

(b)

0 P

Fi1G. 1. Scheme of the asymptotic correction method oper-
ation for refining approximate relations.

S has been already omitted for the ease of represen-
tation. Equation (10) can be easily presented in the
form of equation (6).

Note that a rather comprehensive treatment of the
method of asymptotic correction for the functions
which depend on two parameters is made in refs. [1,
2). Also given there are a great number of specific
examples showing the use of this method in the prob-
lems of convective mass and heat transfer.

1.3. Guiding considerations
Before beginning a discussion of the algebraic
method, it will be useful first to consider simple argu-
ments which provided the starting point for its for-
mulation.
It is well known that the solution of linear ordinary
differential equations with constant coefficients
d’y 'd
il
(to be specific, the second-order equation is given) is
sought in the form

+qy=0 (p,g=const) (1)

(12)

thus leading to the following algebraic (quadratic)
equation for determining the exponent :

¥y =exp (—4ix)

J*—pi+q=0. (13)

The roots of equation (13) specify two linearly inde-
pendent solutions of the initial differential equation

an.

Suppose that the condition g < 0 is fuifilled and
equation (11) is solved under the following boundary
conditions:

y(0) =1, y(w0) =0. (14

The solution of the problem (11) and (14) is given
by expression (12) where 1 is the positive root of the
quadratic equation (13). In this case a local flux at the
point x = 0 has the form

. dy _
’“‘(dx)x-o‘*

It follows from this equality that the algebraic equa-
tion (13) is virtually an equation for determining a
local flux.

We shall reformulate equivalently the two-point
boundary problem (11) and (14) as an eigenvalue
problem. For this, the independent variable in equa-
tion (11) will be stretched according to the formula

¢ = Ax. (16)

15

This will yield

2

24y
&

The solution of this equation, which depends on the
parameter 4, will be sought with boundary conditions
(14) and with an additional normalization-type
requirement

d
P +lpd—)£+qy=0. a7

¢=0, dyd¢= -1 (18)

The problem (17), (14) and (18) is equivalent to
(11) and (14) and is virtually an eigenvalue problem.
Namely, here, besides the solution y = y(¢), one
should also find the eigenvalue of A at which this
solution is possible. In such an approach, the local
heat flux will exactly coincide, by virtue of condition
(18), with this eigenvalue of 4 (equation (15)).

To illustrate the main idea of the method further it
will be provisionally considered that the exact solution
of problem (17), (18) and (14) is unknown. Moreover,
it will be assumed that the main sought characteristic
of the problem is the local heat flux, i.e. the eigenvalue
of 4.

The eigenvalue of A can be approximately deter-
mined in the following simple way not resorting
to the solution of the differential equation (17).
Namely, making use of the ideas behind the Galerkin
method, multiply equation (17) by weighting function
w = w({) and then integrate the expression obtained
over ¢ from zero to infinity assuming that all the

integrals converge. This yields
AA,+ipA,+qA4, = 0. (19)

Here, the coefficients 4, are given by the expression

B w© _ ) 92 ;
Ao—J; wy d¢, A».—L W(dé,,,)dc (20)

wherem =1, 2.
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An approximate algebraic equation for determining
the eigenvalue of 4 will be found from the integral
identity (19) and (20) assuming that y = (), where y
is some prescribed function which satisfies boundary
conditions (14) and (18). The values of the coefficients
Ag, A, A, (equation (20)) are calculated and ex-
pression (19) turns out to be a quadratic equation
for obtaining the unknown parameter 4.

Now, the coefficients of this approximate equation
should be refined by asymptotic correction [1, 2]
making use of the more simple, than initial, auxiliary
problems (17), (18) and (14) in two limiting cases (for
example, when p — 0 and p — o0).

Accurate to the obvious redesignations 41— S,
A,/A| - a,, qAof/A, - a,, the approximate equation
(19) coincides with the quadratic equation (7). There-
fore, after the asymptotic correction the following
equation results:

A=A i-A3=0

D

which is obtained by substituting S with 4 in equation
(10). On the other hand, this very form can be
obtained for the exact equation (13) if account is taken
of the fact that when p — o0 and p — 0, its asymptotics
are given by the formulae 1, = pand 13 = —q. There-
fore, in the considered case of the linear equation
with constant coefficients (11) the above-mentioned
procedure for approximate determination of the
eigenvalue of 4 leads to an exact result, equation (13).

2. PROBLEMS OF MASS AND HEAT TRANSFER
DESCRIBED BY ORDINARY DIFFERENTIAL
EQUATIONS

2.1. Description of the algebraic method

Two important points should first be outlined
which will be required further. It follows from the
comparison of the differential (17) and algebraic (19)
equations that the latter may be obtained if all the
differential terms and unknown functions are formally
substituted by some constants. Account should also
be taken of the fact that the final finding of the method
of asymptotic correction is independent of the specific
values of the coefficients A4,, and therefore, it is even
possible without loss in accuracy not to calculate them
from equations (20) at the given functions y = ¥({)
and w = w(¢&) but, for simplicity, to take them directly
to beequalto 4,, = 1.

The above-described simple means of deriving an
approximate algebraic equation for a local flux (or,
which is the same, for the eigenvalue of 1) is easily
extended to much more complex non-linear ordinary
differential equations with variable coefficients the
exact solution of which is already unknown. Namely,
an algebraic equation for a local flux can be directly
obtained from the initial differential equation via the
simple formal procedure : an independent variable is
introduced according to equation (16), after which
all of the dimensionless dominant parameters of the
problem (for equation (11) these are p and ¢) and

the quantity 1 = j is fixed at its locations, whereas
the remaining terms (derivatives, functions and
‘stretched’ coordinates) are substituted by the con-
stants which, without loss of generality, can be taken
equal to unity.

This simple basic scheme substantially saves time
and makes it possible to mentally deduce the sought
approximate algebraic equation for a local flux. It
results from the integration of the differential equation
(obtained after the extension of equation (16) and
multiplication by the weighting function w(¢{)) over
the coordinate ¢ from zero to infinity and subsequent
assignment of some specific profile y = () with the
use, at the final stage, of the method of asymptotic
correction for the thus found algebraic equation. The
errors, which are introduced in such an approximate
approach, are attributable to the fact that the exact
solution of the initial boundary-value problem, ob-
tained after the substitution of equation (16), is
generally dependent not only on the stretched coor-
dinate ¢ but also on the dimensionless parameters of
the problem: y = y(¢;p,9).

As usual, in specific problems of convective mass
and heat transfer and chemical! hydrodynamics, the
designation y = ¢ will be used for dimensionless con-
centration and equation (16) will be stretched by the
formula

x=¢fj (22)
in which relation (15) has already been taken into
account. When passing over from the stretched differ-
ential equation to the algebraic one, all the coor-
dinates, functions and derivatives are substituted for
(+1) except for the first derivative dy/d&, which is
replaced for convenience by the negative value (—1) in
conformity with the physical implication, since under
boundary conditions (14) the inequality dy/d¢ <0
takes place.

Specific examples will now be considered which
illustrate the possibilities of the method suggested.

2.2. Turbulent fluid flow mass transfer compounded by
a volumetric chemical reaction

First, the following boundary-value problem for a
second-order non-linear ordinary differential equa-
tion with variable coefficients will be considered :

d

de
a—;[(]+m")d—x] —kf(c)=0 (23)

x=0,c=1; x>ow; c—0. (24)

Atn = 3, equation (23) describes the turbulent fluid
flow mass transfer, compounded by a volumetric
chemical reaction, near the tube walls far from the
inlet section [3, 4]. In this particular case the dimen-
sionless parameters and variables appearing in the
formulation of problem (23), (24) are introduced by
the formulae
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X C a’KF(C,) i
= = =" /O=Fey
I/ZX:l
=7 ”T”T[(%o) 7]

where a is the tube radius; X the distance reckoned
from the tube wall; C the time-averaged reagent con-
centration in the flow; C, the concentration on the
tube surface ; K a constant of the volumetric chemical
reaction rate; W = KF(C) the volumetric reaction
rate; D the diffusion coefficient; D; the turbulent
diffusion coefficient; 7, the shear stress on the tube
wall; p and v the density and kinematic viscosity of
fluid, respectively ; yr some empirical constant.

Henceforth, the value of the parameter n will not
be specified. It will only be assumed that the condition
1 < n < o is fulfilled. An exact solution of problem
(23) and (24) is unknown, therefore, it will be analysed
by the algebraic method.

According to the method given above, the coor-
dinate x in equation (23) will be stretched by equation
(22). This will yield

{dz 2—n n nl
e R O R

~k{f(©} =0. (@25

Substitution of the expressions within braces, taking
account of their sign, by the values +1 gives the
algebraic equation for a diffusion flow

(26)

Further assuming successively in equation (26) that
o =0 and k=0, the asymptotics of the quantity
Jj=J(a,k) are found

JO.k) = Jk, j(0,0)=a'" 27

Eliminating from equations (27) the parameters ¢
and k in terms of j(0,k) and j(s,0), equation (26)
for a diffusion flow can be rewritten in the following
form:

J (o, k)= j"(0,0)/27"(0,k) — j*(0,k) = 0. (28)

To obtain the sought algebraic equation for j, it is
necessary, from the initial differential equation (23)
taking into account boundary conditions (24), to find
exact values of the asymptotics j(c, 0) and j(0, k) and
substitute them into relation (28).

At o = 0, the solution of problem (23) and (24) can
be written in an implicit form

1 (4 - 1/2
[ [ ] e

The diffusion flow j= —(de¢/dx),., corre-
sponding to relation (29), is determined by the for-
mula

et —k=0.

29

1
JO,k) = 2k, (> = J; Sfle)de. (30)

In the othier limiting case, at k = 0, the solution of
problem (23) and (24) is given by the expression

€= T+ox |} 140x

thus leading to the following value for the diffusion

flow:
n., =wm
i =g |~sin—~).
J(6,0) =0¢ (7: smn)

The substitution of formulae (30) and (32) into
equation (28) enables the following sought approxi-
mate algebraic equation for the diffusion flow to be
derived :

@31

(32)

jz—a( sin ) "—2k(f>=0. (33)

In a specific case of the first order volumetric reac-
tion, corresponding to linear equation (23) at f=¢,
the cubic equation (33) at n =3 and {f) = 1/2 was
obtained in ref. {4] by another technique. A com-
parison was also made in this work between the root
of this approximate equation and the data of direct
numerical integration of the full initial two-point
boundary-value problem (23) and 24) atn =3, f=¢
which showed a good agreement of these results for a
diffusion flow (within 5%).

For the Nth-order volumetric reaction, which cor-
responds to f(c) = ¢*, it should be assumed in equa-
tion (33) that {f) = (N+1)~".

2.3. Mass transfer to the surface of a disk rotating in
a fluid in the course of a volumetric reaction
Consider now the non-linear problem

dZ
s +Px” -kf(c) (34)
x=0,c=1; x—>00,c—0 (35)

which at m = 2 describes the concentration field in the
vicinity of the disk rotating in a fluid. In this case
dimensionless quantities are introduced by the for-
mulae

X C v
x=;, C=a, P=0.51b-,
v /2 GZKF(C)

a= (5) s kf(c) = DC,

where X is the distance to the disk surface, w the
angular velocity of disk rotation.

Problem (34) and (35) also describes the con-
centration field in the vicinity of the forward stag-
nation point of a spherical droplet (at m = 1) and of
a solid particle (at m = 2) immersed in a translational
Stokes flow at large Peclet numbers (in these cases,
the parameter P coincides with the Peclet number
accurate to the constant factor).

To approximately analyse problem (34) and (35),
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use will be made of the algebraic method. After trans-
formation of equation (22), equation (34) takes on
the form

d2
{dé}m -*{cm } Kf@). Q6

All the quantities within braces will be substituted for
+1, and this will give the algebraic equation for the
diffusion flow

F=Pj'-m = k. (37)

Now, asymptotic correction of equation (37) will
be made by the limiting values of the parameter k. At
k = 0 equation (37) gives

Jo=PY"*Y  (k=0). (38)
For large k, when m > 0, equation (37) yields
=k (k- ). (39)

Further, eliminating the quantities £ and P from
expressions (37)—(39) gives the following approximate
equation:

F=i5r T = =0, (40)
It is into this formula that the corresponding
asymptotics of the solution of the exact problem (34)
and (35) should now be substituted.
At k = 0, the solution of problem (34) and (35) has

the form

c=j exp(——%x’"*’)dx/
_____x/n+l d
[en( st

Hence, the local flow will be given by

= (m+ l)l/(m+ 1) I:r (;;L_'_—l-)]— : Pl/(m+ }} (41)

where I'(2) is the gamma-function.

When k - o0, the second term on the left-hand side
of equation (34) can be neglected. The solution of
the corresponding ‘truncated’ problem is given by
formula (29) and the diffusion flow is determined by
the equation

f
= @k(N = ﬁ fleyde. (42

Substituting the exact asymptotics (41) and (42)
into equation (40) gives the sought approximate
algebraic equation for the diffusion flow

F—(me1y [r (;%)] B —2k(fy =0,

(43)

It follows from the results of Section 1 that in the

case of the first-order volumetric chemical reaction
(f= ¢, {f> = 1/2) at m = 0 equation (43) is accurate.

Remark 1. When deriving approximate algebraic
equations, it is possible not to take into account the
sign of the first derivative. In other words, all the
terms, without exception, omitted in the initial differ-
ential equation can be substituted by unity (i.e. there
is no need to keep additional information in memory).
The subsequent procedure of asymptotic correction
by all means will automatically lead to a correct result.
For example, having omitted the terms within braces
of differential equation (36), it is possible to obtain
the following equation instead of equation (37):

F+Pim =k (37a)

(here the sign of the first derivative has been dis-
regarded already). Letting the parameter k in this
equation approach zero yields

P=—j2*" (k=0). (38a)

In the other limiting case, when k — oo, asymptotic
(39) is obtained, with the inequality m > 0 being taken
into account.

Eliminating the parameters P and k from ex-
pressions (38a) and (39) in terms of j, and j. and
further substituting them into formula (37a) give the
same algebraic equation (40).

It will be shown now in what way the above method
can be applied to approximately analyse linear para-
bolic equations the coefficients of which are inde-
pendent of time, and particular problems will be con-
sidered.

2.4. Non-stationary mass exchange of a wall with a
quiescent medium in the course of a first-order volu-
metric reaction

Mass exchange of a wall with a quiescent medium
compounded by a first-order reaction is described by
the following dimensionless equation, initial and
boundary conditions :

dc 9%

5 o ke @9
t=0,c=0; x=0,c=1; x—>00,c—>0.
(45)
Making use of the Laplace—Carson transform
&= pf e 7 edr (46)
0

reduce the problem for the partial differential equa-
tion (44) and (45) to the problem for the ordinary
differential equation with the complex parameter p

d?¢

pric i = (p+k)¢ 47)
x=0,=1; x> 00,¢->0. (48)
Similar to equation (22), substitute x = &/j in
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equation (47), where j is the image of the diffusion
flow. As a result, obtain

i {d ‘} o +R(E.

In accordance with the algebraic method omit the
quantities within braces. This gives a quadratic equa-
tion for j the solution of which has the form

J=+i)h

It is easy to verify that expression (50) does not
need asymptotic correction, because it gives accurate
agymptotics in the limiting cases when p - 0 and p —
0. Therefore, applying the inverse Laplace-Carson
transform to equation (50) [S5], the formula for the
diffusion flow can be found

(49)

(50)

j= exp (—kt)+/kerf J(kr). (51)

i
J(@)

It is not difficult to show that expression (51)
coincides with the results of the exact solution of the
initial problem (44) and (45).

2.5. Mass and heat transfer in turbulent flow in the
tube inlet section

Consider a turbulent flow with constant physical
properties in a round tube of radius a. Assume that
the admixture concentration in the initial section at
Z = 0isequal to C,, (Z-axis is directed along the tube
axis), whereas on the tube wall at X = 0 it is equal to
C,. At large Schmidt numbers the main resistance
to mass transfer is concentrated in a thin diffusion
boundary layer adjacent to the tube surface. In this
region, the distribution of fluid velocities can be taken
linearly dependent on the distance to the tube walls
and the normal component of the turbulent diffusion
can be described by the main term of expansion when
X0,

Under the assumptions made the distribution of the
time-averaged concentration in the tube inlet section
is described by the following equation and boundary
conditions [6] :

x-&s%(lﬁ-aﬂ)% (52)
z=0,c6=0; x=0,c=1; x—=0,c-0 (53)
where
c=Cm-—C Z___aD((u))”Z
Co—C,’ 8y’

<u) is the section-averaged fluid velocity ; the rest of
the dimensionless values are introduced analogously
to equation (23).

Application of the Laplace-Carson transform (46)
(in which < is substituted by z) to problem (52) and
(53), gives the ordinary differential equation

189

d dé x
a(l+crx")d—;=pxc (54)
(55)

In accordance with the algebraic method, §tretch
equation (54) by the formula x = ¢/, where fis the
diffusion flow image. As a result, obtain

j {gé-}+af’“" {5" §2+ né? } = p{éc}.
(56

Omitting the terms within braces gives the algebraic
equation with the complex parameter p

x=0,=1; x—=0,i-0.

JPeap"—p=0. (57
At n = 3 the solution of equation (57) is given by
J=@©+p)". (5%

Application of the inverse Laplace-Carson trans-
form to equation (58) [5] gives the diffusion flow

i3

j= TaR) = — [y 02) +(62)" P exp (—a2)] (59)

where

(o, x) = j e tdg
L]

is the incomplete gamma-function, I'(a) = y{x, ) is
the gamma-function.

This formula should be refined by the method of
asymptotic correction. Asymptotics (59) at small and
large z have the form

)z ETT YA -0 jo= a'? (z - ). (60)

Jo= r(2/3
Elimination of z and ¢ from equations (59) and (60)
yields

1A+ Jo g4 1)

. _'!_ _ i
Jo  T(2f3)
where

11'30

remy s

Now find the exact asymptotics of the solution to
the initial problem (52) and (53) at n = 3.

When z — o, the left-hand side of equation (52)
can be neglected. The solution of the corresponding
‘truncated’ problem is given by formula (31). Atn =3
it leads to the following expression for the limiting
diffusion flow:

A=

33}'2
jo =50

5 (z = c0).

(62)

It can be shown that at small z the second term
on the right-hand side of equation (52) is small as
compared with the first one. Therefore, to find the
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sought asymptotic it is necessary to consider the equa-
tion

dc 0%

X =3

dz  ox?

with boundary conditions (53). The solution of this
problem is given by

(iR
r(1y/3)" \3’ 9z
Differentiating expression (64) with respect to x and

assuming x = 0, it is possible to calculate the diffusion
flow

(63)

¢ (64)

31,’3
Jo= a3 7 (z

In accordance with the algebraic method, the exact
asymptotics (62) and (65) should be substituted into
formula (61). The resulting approximate relation
Jj =Jj(z), which is not written out here, will give an
accurate result in the limiting cases when z —» 0 and

Z = Q0.

- 0). (65)

3. PROBLEM OF A STATIONARY DIFFUSION
BOUNDARY LAYER (PARTIAL
DIFFERENTIAL EQUATIONS)

3.1. Description of the algebraic method

In those cases when the necessity arises to study
stationary boundary layer equations, described by
partial differential equations, the proposed method
for deriving approximate algebraic equations to deter-
mine the integral mean characteristics of the problem
virtually does not change and remains the same as
for ordinary differential equations. In this case the
stretching of the boundary layer coordinate x,
directed normal to the body surface, should be made
by equation (22), where, by virtue of the analogy
principle [2], the local flux j can be immediately
replaced by the mean Sherwood number, i.e. it can be
assumed that

x=a
Sh’
After the above mentioned transformation, the
dimensionless parameters of the problem and the
sought value Sh, will be retained whereas the remain-
ing terms will be formally assumed, as before, to be
equal to +1 depending on their sign. The fulfillment
of these operations gives an approximate algebraic
equation for the sought quantity Sh, which should be
improved by the method of asymptotic correction. It
should be especially emphasized that here, in deri-
vation of the algebraic equation, the additional depen-
dence of the equation coefficients and differential
operators on the longitudinal coordinates directed
along the body surface is disregarded (the cor-
responding terms are replaced by unity) ; thus the lost
information will be partially compensated for further

(66)

as a result of the use of the asymptotic correction
technique thus leading to the refinement of the
coefficients of the unknown approximate equation for
mass and heat transfer coefficients.

The algebraic method described above with ref-
erence to the partial differential equations is equi-
valent in a number of cases to the sequential
accomplishment of the following three stages: first, a
degenerate auxiliary problem on the distribution of
concentration near a singular point of incidence is
formulated which is already described by an ordinary
differential equation (i.e. actually, the second-order
model problem is considered at the first stage, see ref.
[21); then, this auxiliary problem is solved by the
Galerkin method; at the last stage the auxiliary
relation obtained at the intermediate step for the local
flow is appropriately rewritten in terms of asymp-
totics, thus finally leading, with the aid of the simi-
larity principle [1, 2], to the desired approximate equa-
tion for the mean Sherwood number.

3.2. Diffusion to a droplet at large Peclet numbers
within the entire range of phase viscosities

Consider a stationary convective diffusion to the
surface of a spherical droplet of radius 4 in a trans-
lational Stokes flow (Hadamard-Rybchinsky flow) at
large Peclet numbers. It is assumed that the con-
centration on the droplet surface and far from it are
constant and equal to C, and C,, respectively. In
dimensionless variables and in the spherical coor-
dinate system r, 8, fixed in the droplet, the cor-
responding boundary-value problem (written in the
diffuse boundary layer approximation) is [2]

d
—2c08 0(4,x+4,x?) -ai

. éc 1 d%
+sin 8(4, +212x)é~ = 7 32 (67)
x=0,c=1; x—>0,c—>000=0,0c/00=0)
(68)
C.—-C alU,,
C=Cx—-C,’ x=r—1, Pe-———b—,
! i (69)

;‘-|=m. Ay =}

Here C is the concentration in the flow, D the
coefficient of diffusion, U, the flow velocity far from
the droplet, f the ratio between the dynamic viscosities
of the droplet and surrounding fluid (f = o cor-
responds to a solid particle and § = 0 to a gas bubble).

Note that in equation (69) instead of the exact value
of the second coefficient 4, = (38+2)/(48+4) its
asymptotic for § — co is taken. The validity of this
simplification of the problem at large Peclet numbers
is proved in ref. [2].

To analyse problem (67)—(69), use is made of the
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algebraic method. For this purpose equation (66) is
substituted into equation (67). This will yield

Pe oc 1 de Pe
Fﬁ{ écosoaf+ smoaa}

3., dc oc
x{—idf cosl)aé+zésmeae}

= Sh? {Z;,} (70)

Replacing all the terms within braces in equation
(70) by +1 gives a cubic equation

Sh? — ﬁ+1 ——Sh—Pe=0.

Taking into account the fact that the condition

Pe » 1 is fulfilled, consider two limiting cases: § ~ 1

and B = . In the first case which corresponds to

a droplet with moderate viscosity, the last term in

equation (71) can be neglected when Pe — co. This
leads to the asymptotic

P, 1/2
Shy = (F:—l) B ~1).

At B = oo, corresponding to a solid particle, obtain
from equation (71)

gy

(72)

Sh,, = Pe'l?, (73)

Elimination of the parameters § and Pe from
expressions (71)—(73) yields the sought cubic equation
for the mean Sherwood number

Sh® — Sh} Sh~Sh3, = 0 (74)

which was derived earlier in refs. {1, 2] by a different
technique.

It is necessary to substitute into equation (74) the
exact asymptotic solutions of problem (67) and (68)
which were obtained at

. 1
A|=m, }»2-_—0 and )-|=0, A,z=%
in ref. {7}

Pe |2 3

In ref. [2] the approximate formula (75) is com-
pared with the results of numerical calculations ; the
comparison showed its high accuracy at large Peclet
numbers within the entire range of change of the par-
ameter f.

3.3. Mass exchange between a droplet and a flow
compounded by a volumetric reaction
The following non-linear equation is now studied :

Pe ge 1 de 62
m(—xcosﬂa sin 069) kf(t‘)

(76)

which, together with boundary conditions (35),
describes the distribution of concentration in the
diffuse boundary layer of the droplet in the course of
a volumetric reaction which takes place in the phase
and the rate of which depends arbitrarily on con-
centration.

Making use of equation (66), transform equation
(76) into

Pe dc 1 dc
m{—écos 055+ sin 060}
, 6
= Sh —k{f(0)}.
Omitting further the terms within braces, obtain a
quadratic equation

Pe
f+1

Allowing for the fact that the asymptotics of equa-
tion (77) have the form

Sh? = +k. an

— Pe N — Y2
Shy = (ﬂ+l) k—=0); Shy,=kVk—x)
the solution of equation (77) will be represented in
the following form:

Sh = (Shi+Sh%)"2. (78)

The exact asymptotic of the solution of problem
(76) and (35) for k =0 and k — oo should be sub-
stituted into the latter expression. At & = 0 equation
(76) passes over to equation (67) at 4, = 0; its solu-
tion leads to the Sherwood number Sh = Shy the right-
hand side of which is written out in equation (75).
When & — co, the left-hand side of equation (76) is
inessential, and the corresponding solution can be
represented in an implicit form (29). In this limiting
case the Sherwood number will be determined by the
right-hand side of equation (30).

Substituting the above-mentioned asymptotics into
equation (78), find the sought relation for the Sher-
wood number

Sh=l:3 B+1) +2kJ. f(c)dc]

It follows from the comparison {8] of equation (79)
with the results of the exact solution of problem (76)
and (35) for the first-order reaction that the maximum
error of equation (79) at f(c) =c is around 7%
within the entire range of change of the parameter
k(0 <k < o0).

/2

(79)

3.4. Mass exchange between a solid particle and a flow
compounded by a volumetric reaction
Consider the non-linear equation

3 de 3 dc
Pe(—ix cosB'3 + = xsm669>

62
=55 —kf© (80)
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which together with boundary conditions (35) de-
scribes the concentration field in the diffuse bound-
ary layer of a solid spherical particle in a translational
Stokes flow. It is assumed that a volumetric chemical
reaction takes place in the liquid.

The substitution of equation (66) leads equation
(80) to the form

Pej 3, dc 3 . dc
ﬁ{—ié coseéz+ifsmaa~0}

62
= Sh? {Eﬁ-} ~k{f(0)}.

Omitting the terms within braces gives the cubic equa-
tion

Sh*~k Sh—Pe = 0. 81)

It can be easily verified that equation (81) can be
rewritten as

Sh®—Sh% Sh—Sh3 =0 (82)

where Sh, and Sh,, are the asymptotic solutions of
equation (81) for k - 0 and & — 0.

It is necessary now to substitute the corresponding
exact asymptotic solutions of problem (80) and (35)
into equation (82). At k = 0, equation (80) coincides
with equation (67) at 4, = 0; its solution gives the
Sherwood number Sh, = 0.624Pe'/®, When k — o,
the Sherwood number will be prescribed just as in the
case of a droplet, by the expression Sh,, = (2k{/>)""%.

Substituting these exact asymptotics into equation
(82), obtain the sought cubic equation for the mean
Sherwood number

Sh3 =2k{fYSh—a Pe =0
where a = 0.243 ~ (0.624)3.

(83)

4. TWO MODIFICATIONS OF THE ALGEBRAIC
METHOD OF STUDYING NON-
STATIONARY PROBLEMS (PARTIAL
DIFFERENTIAL EQUATIONS)

The algebraic method can also be successfully used
to solve non-stationary problems when the charac-
teristics of the process differ greatly with time. In this
case the main formal scheme of method application
admits two different modifications. First, each of these
will be briefly described and then the results of the
solution of a number of specific non-stationary prob-
lems by both methods will be analysed and compared.

It should be noted that, in both the first and second
modifications, preliminarily the coordinate x is
stretched according to rule (22) with subsequent fix-
ation of all the dimensionless parameters of the prob-
lem and of the diffusion flow at their places and sub-
stitution of the remaining terms, which incorporate
the derivatives with respect to coordinates and the
functions of dependent and independent variables, by
the values +1 (according to their sign), just as it was

done earlier in stationary problems. The approaches
differ only in the way of the substitution of the non-
stationary term which involves a partial derivative
with respect to time dc/dt, where 1 is the dimensionless
time. In the limiting case of infinitely large times (when
7 — o) both modifications lead to identical results
corresponding to the solution of the same stationary
problem.

4.1. The first modification of the algebraic method
It involves the formal substitution of the partial
derivative with respect to time in a differential equa-
tion by the algebraic relation according to the fol-
lowing rule:
dc 1

_—=

ot 1 (84)

When refining the coefficients of the thus obtained
algebraic equation by the method of asymptotic cor-
rection, the dimensionless time is already considered
to be a new additional parameter (i.e. when improving
the algebraic expression, use is made of the exact
asymptotics of the initial problem in the limiting cases
t—0and r - ).

In other words, the first modification of the
algebraic method consists in the sequential fulfillment
of three operations: first, the derivative d¢/dt in the
differential equation is substituted according to rule
(84) ; then the coordinate x is stretched by equation
(22); after this all of the initial dimensionless par-
ameters of the problem and the additional quantities
Jjand 7 are fixed at their places and the rest of the terms
are replaced by +1. A simple physical explanation
for this formal technique of obtaining approximate
algebraic equations will be presented in Section 4.2
(see Remark 2).

4.2. The second modification of the algebraic method
The second modification of the algebraic method
is somewhat more complex. It consists of a formal
substitution of the partial time derivative by the fol-
lowing complex which involves the ‘direct’ derivative

dc 1dj
Frag jdt’ 83)

This, at first sight rather complicated rule can be
easily explained when it is remembered that there is a
complete identity between the algebraic method and
the combination of the Galerkin method with the
method of asymptotic correction in application to
stationary problems described by ordinary differential
equations. Now, requiring the fulfillment of the equiv-
alency of the above methods also more complex non-
stationary problems, which are formulated for partial
differential equations it is possible to show that this
requirement will lead to the above correspondence
(85).

In fact, in the integral methods the solution of non-
stationary problems is sought in the form ¢ = (x/d),



An algebraic method for heat and mass transfer problems 193

where § = () is the boundary layer thickness which
already depends on time. For the initial and boundary
conditions (45) under consideration the concentration
profile ¥ and the function & should satisfy the con-
ditions ¥{0) = 1, y(c0) = 0, §(0) = 0. In accordance
with the Galerkin method muitiply the derivative
dc/0t by any weighting function of the type
w = w(x/8) > 0. Integration of the resulting expres-
sion over x from zero to infinity leads to the follow-
ing set of equalities:

= x\6c ®© x\ & x

fo ‘“(‘s)b‘%“"”ﬁ (a)“["’(a)]"

_g_lé ® __f,l_'/ﬂ _const. _}_(ﬂ
"er ‘“’m( dc)“‘ 7 ( fdr)

where the relation j=const. §~' was taken into
account. It is assumed that the remaining part of
the equation is a sum of the terms of the form
f(©)x"(6™c/dx™). Being multiplied by the weighting
function w and integrated over x from 0 to oo, these
quantities are transformed by

g x e
L ”(5)f (" (a?)""

n4 - ® i d’"
=4+t J; w({){ f(w(C))EE:;dC

const.
J

ity

=

.

It is precisely the comparison of expressions (86)
and (87) with regard for the method based on the
stretching of equation (22) for stationary problems
(see Section 2), and also the use of the fact that the
specific values of constants in the initial approximate
formula are inessential for the method of asymptotic
correction which leads to rule (85).

From the foregoing, it is clear that the above modi-
fication of the algebraic method for obtaining
approximate relations includes three stages: first, a
non-stationary term of the partial differential equa-
tion is substituted by a differential term according to
rule (85); then the spatial coordinate is stretched by
formula (28) and, finally, all of the dimensionless par-
ameters and quantities j and dj/dr are fixed at their
places whereas the remaining factors are substituted
by the constants equal to +1. After that, the thus
obtained differential equation is solved. At the third
stage, according to general rules, the solution is refined
by the asymptotic correction method ; now the time ¢
enjoys already the same right as do the dimensionless
initial parameters of the problem.

It follows from the comparison of expressions (84)
and (85) that the transition from the algebraic equa-
tion for a diffusion flow, obtained by the first modi-
fication of the method, to an ordinary differential
equation, derived by the second modification of the

Ly S 5.4

method (and tonversely), is accomplished by means
of the simple correspondence

1 1dj
= E (88)

This rule of transition is most useful when applied
at the final stage after asymptotic correction of the
algebraic equation coefficients thus making it possible
to directly obtain a differential equation which gives
a correct result in the limiting case t - co.

The approximate solutions obtained by both modi-
fications of the algebraic method coincide at small
and large times. However, there is one substantial
qualitative difference in them: the solution of the
algebraic equation, which corresponds to the first
modification of the method, decreases in the power-
law fashion at large times, whereas the solution
of the differential equation derived by the second
modification of the method damps out much quicker
exponentially,

The now available exact solutions of non-stationary
mass and heat transfer problems have a decreasing
exponential character with 1 co. This important
fact suggests that the second modification of the
algebraic method leads to more accurate results.
Nevertheless, it will be shown further on specific
examples, that the first modification of the method
also gives good results which can be used directly in
engineering practice.

Remark 2. Some considerations will now be given
which were involved to formulate the first modi-
fication of the algebraic method. It is assumed that the
Galerkin method gives the equation for the boundary
layer thickness 4. Let the quantity J be limited at large
times

tlin; 8 # co. (89)
The requirement that 6(0) = 0 at small times gives
the following approximate equality for the derivative
dé/dz:
dé

—— R —

. (t—0).

(90)

On the other hand, by virtue of equation (89) at
large times the ratio §/t and the derivative dd/dt have
the same asymptotics

@_

d
dr ;—'0 (‘L’—’OO).

on
Allowing for the fact that in both limiting cases,
t-»0and t — o, the quantities dd/dt and &/t behave
identically, it is possible in the equation for the bound-
ary layer thickness to substitute the differential term
by the algebraic one according to the rule
déd 6

—_——

drt ¢ ©2)

The use of the relationship between the boundary
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Table 1. Master table of the main rules of the algebraic method operation

Term in the initial
differential equation

Rule of substitution in the
derivation of an approximate

{parabolic type) equation for a diffusion flow
1 . .
- the first modification
gc_' T
@ 1dj
’ y d_: the second modification
e .
F (=)
x* 1"
S () 1
900 9()
k characteristic parameter of the k

problem (used for asymptotic
correction)

Note. When derived, the approximate algebraic {differential) equation for the
diffusion flow j should be refined by the method of asymptotic correction.

layer thickness and the diffusion flow 6 = const./j
makes it possible to obtain from equation (92) that
1dj 1

= —

“FEaTy 93)

Correspondence (93), which is analogous to cor-
respondence (88), allows one to pass over from the
second to the first modification of the algebraic
method. Therefore, the first modification of the
algebraic method is equivalent to the successive use
of the Galerkin method, approximate substitution of
the derivative rule (92), transition from the boundary
layer thickness J to a diffusion flow by the formula
J = const./d, and to the application of asymptotic cor-
rection at the final stage of the method.

4.3. Master table of the main rules of the algebraic
method

Taking into consideration the foregoing, it is not
difficult to compile a simple master table of the main
rules of the algebraic method operation (see Table 1)
which makes it possible to quickly derive the sought
algebraic equations for the diffusion flow j. For this
purpose, each term of the initial differential equa-
tion, which corresponds to a certain combination of
expressions in the left-hand column of the table,
should be substituted by the corresponding quantity
located in the right-hand column. The resulting
algebraic (for the first modification of the algebraic
method) or differential (for the second modification)
equation for a diffusion flow should be then refined
by the method of asymptotic correction.

Differential equations obtained with the aid of the
second modification of the algebraic method should
be supplemented with the initial condition : j(0) = co.

Now, it will be shown in which way Table 1 of the
main rules of the algebraic method operation should
be used for solving specific non-stationary problems.

5. SOLUTION OF SPECIFIC MASS AND HEAT
TRANSFER PROBLEMS WITH THE AID OF THE
ALGEBRAIC METHOD

5.1. Non-stationary mass exchange between a wall and
a quiescent medium during a volumetric reaction the
rate of which depends arbitrarily on concentration

Consider now a more general, than (44) and (45),
non-linear problem which is described by

dc %
Frialrm Al A0 (94)
with the initial and boundary conditions {45). Inequa-
tions (94) and (45) the dimensionless quantities are
related to dimensional ones in the following way :

L X

€= T FTw
_aKFC) .. FO
k= DC, ’ f(c) b F(C,)

where C is the concentration, C, the concentration
on the wall surface, ¢ the time, D the coefficient of
diffusion, X the distance to the wall, a the quantity
which has the dimensional representation of length,
K the constant of the volumetric chemical reaction
rate, W = KF(C) the volumetric reaction rate.
Substituting each term of the differential equation
(94) according to the rules given in Table 1 for the
first modification of the algebraic method yields the
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with the use of the asymptotic correction method. In
the limit T — o0, equation (95) gives

=k G 96)
At sma § times eauation {995) vields
A SaE NS LGU fion ey ks
jo= 1 @=0). o7

Further, eliminating the parameters k and 7 from
equation (95) with the aid of the limiting relations
(96) and (97), 2 formula is obtained for a diffusion

ﬁew

J=(i+i)"

(98)

Now, exact asymptotic solutions will be obtained
for the initial problem (94) and (95) at small and large
times. When t — 0, the second term on the right-hand
side of equatioa (94) can be neglected, aﬁé this, with

tha nl and haindar: neditians f48Y laade tn tha
v.uc uuua; and Uvuuua!y conqQiuons \‘!’J}, ICaUT W Liiw

well-known distribution of concentration

c=erf¢
)
This expression gives the foliowing relation for a
diffusion flow:

(99)

N 12

Jo = (n7)

In the other limiting case T — o the left-hand side
Oi cquaiiﬁi'i {54} is incssential and the Cﬁi‘i‘ﬁii‘}ﬁﬁuillg
asymptotic for jis given by equation (42},

Substituting relations (42) and (100) into equation

(98), obtain the sought expression for a diffusion flow

; / 1 FaN \”2

j= WS
\me T2 )

In specific cases of the first- and second-order reac-
tions, which correspond to f = cand ¢?, formula (101)
was derived by a different technique in ref. [4].

T thic snea tha cancmd v S hE ey a atoabanln

A £l
paty LIIID VAW LWL AU lll\lulll‘wﬂl«lull wi lllc AlBwUL Al

Faty

- £1anM
{t—0). (100)

method leads, according to Table 1, to the ordinary
differential equation

1dj 2
———t =k ’)
ja) (102)
the solution of which has the form
foe JBTl—awe { —Olwi1- 12 101
i Vl\e{i VA}J 3 mt)lj * \AVJ;

To refine the coefficients of this expression, use is
made of the asymptotic correction method. When 1 «»

co, equation (103) gives asymptotic (96). At small
times equation (103) yields

Jo=(@0)V (t-0). (104)
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F1c. 2. Comparison of approximate (101), (106) (solid lines

1, 2}, and exact {51) {dashed line) variation of a diffusion
flow with time for the first-order reaction.

Eliminating the parameters k& and 7 from formula
(103) by the limiting relations (96) and (104) gives the
following expression:

12 - 172
m-—{¥ e‘p{-—%\{} .
R _!
Substituting now the exact asymptotics (42) and

(100) into equation (105), find the approximate
dependence of the diffusion flow on time

J= @Y —exp (= 20k T ¥ (106)
Figure 2 presents a comparison of the approximate
(101) and (106) (solid lines) and exact (51) (a dashed
line) relations for the first-order reaction (which cor-
responds to f=c and {f) = 1/2). It is seen that

expression (101) obtained with the use of the first
modification of the algebraic method leads to over-

estimated results as rnm?aﬂsd with the exact solution

CSLIILIR WAL SIS a5 UL AR Wl FYANAR tadv LAGLL SR i naliia.

The maximum difference of the approximate formula
(101) from the exact equation (§1) amounts to around
10%. As follows from Fig. 2, the approximate ex-
pression {106) derived with the aid of the second
modification of the algebraic method gives somewhat
underestimated values as compared with the exact
result. The error amounts in this case to about 4%.

o~
ot

5.2. Mass and heat transfer in turbulent flow in the
tube inlet section

Let us return now to problem (52) and (53) in
which the longitudinal coordinate serves as the time
analogue. According to the first modification of the
method Table 1 (at T = z) gives the following algebraic
equation for a diffusion flow:

—=F-aj" (107)

zf
Find the asymptotical values of jat small and large
2.
Taking into account that n>0, find
expression {107) forz -0

rom
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Jo “ TV \1vo)

In the other limiting case
Jo =c"" (z— ). (109

Eliminating the quantities z and ¢ in formula (107)
with the aid of asymptotics (108) and (109) and mak-
ing simple transformations give the sought algebraic
equation for a diffusion flow

=R =i =0. (110)

In accordance with the approach used, the quan-
tities joand j, in equation (110) should be substituted
by the exact asymptotic solution of the initial problem
(52) and (53) for z - 0 and z - oo which are given
by equations (65) and (32), respectively. As a result,

Altaiea
outain

P 3
Srany 2’

Now make use of the second modification of the
algebraic method. According to Table | the partial
differential equation (52) generates the ordinary
differential equation

dj

AT 4 .
a- j t+aj

(112)

At large z the left-hand side of this equation can be
neglected. In this case relationship (109) is preserved
between the limiting flow and the parameter 0. At
small z the asymptotic solution of equation (112) has
the form

=(3z)" '

(z = 0). (113)

The derivation of this formula was made taking

inte account condition j(0) =

Evneacaiane F100) amd 1113 allaw,
LEAPTLINUIND (1vr) alll (312} aulUw

to be written as

di
4 S N sdeen
Jogr=it=rei (114)
dje
The ss}uu'an of this é‘qﬂﬁd(}ﬁ satisfying the con-
dition j/j,— 1 for j, — oo is given by
o d}(
{ = 3J s (11s)
!, yl__y4 [

where the variables y and { are related to diffusion
flows as

y=2>, (=12 (116)
[+]

As usual, the quantities j, and j. shouid be
replaced by exact asymptotics which are prescribed
by formulae (65) and (32).

To make further calculations, it is necessary to spec-
ify the value of the exponent # = 3. In this case the
solution of the cubic equation {(110) in variables (116)

SOILION O g culint cqialion i A valldales
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FiG. 3. Diffusion turbulent flow in the tube inlet section

obtained bv using the first fln—m 1. equation (117)) and second
obtained by using{ LSquation (11/))andseconc

(line 2, equation (118)) modifications of the algebraic
method. The dashed line corresponds to relation (61).

y={1+{ D" (1

Integrating equation (115) at n =3 and making
simple transformations give the following relation :

y=(l—e (118)

In Fig. 3 solid lines show the results of calculations
by formulae (117) and (118) obtained on the basis of
the first and second modifications of the algebraic
method. The dashed line corresponds to relation (61).

AG QASDICC LN LOIIRAPOIICS LO IR0V
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5.3. Non-stationary heat and mass transfer in turbulent
Jiuid flow far from the tube iniet section
Analyse the equation

#emd e uool femttind s d v daos e

Wlilb!l, wgliuatr wxu: UIC iniiia: ana Uuuuucuy LUl
ditions (45), describes the model problem of non- -
stationary heat and mass transfer in turbulent fluid
flow at a distance from the tube inlet section.

The use of the first modification of the algebraic
method for this problem leads to the equation

%=;2~gﬁ- (120
the asymptotic solutions of which at small and large
times have the form

Jo=1/Jt (z—0).

~1in s

Jo =0 {t— w0}

Equation ( 0) can be rewritten, with the aid of
nd 122), ag

2Ly S

(123)

Substituting into equation (123) the exact asymp-
totic solution of problem (119) and (45), i.e. j, and
J». which are given by formulae (100) and (32), gives
the sought equation
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The second modification of the algebraic method
leads to the differential equation

(125)

The unbounded solution of equation (125) for z —
0 is determined by the asymptotic

Jo=Q0)™" (1-0) (126)

whereas for T — oo equality (122) is valid.
Equation (125) can be presented, with the aid of
expressions (122) and (126), in the form

(127)

The solution of equation (127) with the property
jljo— 1 for j,— co is determined as

i f © dy J
= =2| —s—=—, where y=-=—. (128
72 X Py y e (128)

Hence, at n = 3 the integration will give

2 2j+)
+ —- arctan (LH—”> - —n—. (129)

V3 J=37 3

The exact asymptotics j, and j,, calculated by for-
mulae (100) and (32) should be substituted into
expressions (128) and (129).

5.4. Non-stationary diffusion to a rotating disk
Now consider the equation

dc dc 9%
3 — Px™ Feiade (130)
with initial and boundary conditions (45).

At m = 1 and 2, problem (130) and (45) describes
a non-stationary concentration field in the vicinity of
the forward stagnation point of a bubble and a solid
particle in a translational Stokes flow at large Peclet
numbers (the parameter P differs from the Peclet
number by a numerical factor). To the value n = 2 in
equation (130) there corresponds a non-stationary
diffusion to a flat disk rotating with constant angular
velocity in a viscous incompressible fluid [8] (in this
case T = Dt/a* and the rest of the dimensionless quan-
tities are introduced in the same manner as in equation
(34)).

Further, without any loss of generality, it will be
regarded that the parameters m and P in equation
(130) can take any non-negative values.

The first modification of the algebraic method (see
Table 1) leads to the equation

1
;+Pj"”’ = (131)

the asymptotic solutions of which at small and large
1 are determined by the formulae

(132)
(133)

Jo=1"" (1-0)

o =PV (15 ),

Eliminating the parameters ¢ and P from relations
(131)-(133) yields

(134)

U Bl £

Substituting into this equation the exact asymp-
totics j, and j,, which are obtained when studying
problem (130) and (45) and which are given by
expressions (100) and (41), find the sought algebraic
equation for a diffusion flow

1 -m=t 1
2 o S jl-me — =
ji—(m+1) [F( T 1)] Pj - 0.

(135)

In the specific cases of m = 0 and 1 the solutions of
the quadratic equation (135) have the form

P [P 12

1/2
j=(2—P+i> atm=1)

e (137

and the value m = 2 corresponds to the cubic equation
=)~ i-9ir (N *P=0 (atm=2).
(138)

The second modification of the algebraic method
in the case considered gives the ordinary differential
equation

1dj

—_— A—m = +2

Jar +Pj J (139)
the asymptotic solutions of which at small and large
times are prescribed by formulae (126) and (133),
respectively. With the above being taken into account,
represent equation (139) in the following form:

-3ﬂ — 3 __im+l2em

Jo o J =l J

The solution of equation (140) is determined by

formula (128) where it should be assumed that

n = m+ 1. After this, the exact asymptotics j, and j,

which are given by expressions (100) and (41), should

be substituted. As a result, the procedure described
and integration will give

t=—;[%3|:§+ln(l—§)] (atm=0) (141)

1/2
j= (%—?)/ [l —exp (—2P0))" "2 (at m=1).

(140)

(142)
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Here the relation j = j(t) at m = 0 is written in an
implicit form. At m = 2, the solution of the equation is
given by equality (129), where j, and j, are calculated
from formulae (100) and (41).

It is important to note that at m = 1 formula (142)
is exact (this follows from the results of ref. [2]). This
very pleasant fact has a much more general character.
Namely, it can be shown that the second modification
of the algebraic method always leads to an accurate
result when the solution of a non-stationary problem
is self-similar and can be presented in the form
¢ = ¢(x/d), where & = 4(z) is some function of time.

Now, an approximate solution of problem (130)
and (45) will be constructed by another technique.
For this purpose, the Laplace—Carson transform (46)
will be used. As a result, the concentration image ¢
will be given by

d dé

a;+P)C’"———pE=0

e (143)

with boundary conditions (48).
With the use of the algebraic method, the equation
for the diffusion flow image j is derived as

Ji-Pj'""—p=0 (144)
the asymptotic solutions of which are
Jo =PV (p| = 0); J. = /p(lpl = ).
(145)

Eliminating the parameters P and p from equations
(144) and (145) gives

T2_T1+mIl—m

=iyt =i, =0. (146)

It can be easily shown that the exact solution of
problem (143) and (48) leads to the asymptotics

l -1
7= mi(m+1) 1(m+ 1)
Jo=(m+1) [F (m-H)] ) .
Jo=+p. (147)

Substitution into equation (146) gives

- 1 -t
72 __ m fl=m__ o — :
Ji=(m+1) I:I' (m+1):l Pj p=0

(148)
Solution of equation (148) at m =0 and 1 and

application of the reverse Laplace-Carson transform
yield the following expressions for a diffusion flow:

., P P P
j—5+§erf(5\/r>

PZ
exp(—-Tt> (at m=0) (149)

1
+ V(@D
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F1G. 4. Comparison of the exact (dashed line, equation (149))

and approximate (solid lines | and 2, equations (136) and

(141)) expressions for diffusion flows corresponding to the
solution of problem (130) and (45) at m = 0.

2P 1/2 2P 1/2
n (4

L ex (_?f) @m—=1). (150)
Ja P\ 7 -

It is important to note that formula (149), obtained
by an approximate method is exact.

Figure 4 presents a comparison of the exact, (149)
(a dashed line), and approximate, (136) and (141),
expressions for a diffusion flow which corresponds to
the solution of problem (130) and (45) at m = 0. It is
seen that the approximate formula (136) obtained
with the use of the first modification of the algebraic
method gives overestimated values as compared with
the exact formula (149), the maximum error in this
case is 5.5%. The difference of the approximate
expression (141), which is a consequence of the use of
the second modification of the algebraic method, from
the exact one is around 10%.

Figure 5 shows the dependence of the diffusion
flow on time which corresponds to the approximate
formula (137) (solid line 1) derived at m = | by the
first modification of the algebraic method ; also given
is curve (142) (solid line 2) obtained with the use of
the second modification of the method. As was noted
above, in this case expression (142) coincides with the
exact solution. It is seen that the maximum difference
of the approximate formula (137) (due to which there
are overestimated values) is rather great and amounts
to about 14%. The dashed line corresponds to the
approximate relation (150) the maximum error of
which is equal to 4%.

5.5. Convective mass transfer to a flat plate with a
simultaneous volumetric reaction

Consider stationary convective diffusion to the flat
plate surface in the translational viscous incom-
pressible fluid flow at large Reynolds numbers (Blau-
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Q.1 o2 o3 ¢85 i
2Py
r

FI1G. 5. Relationship between a diffusion flow and time

obtained by solving problem (130) and (45) at m = 1. Line

1 corresponds to equation (137). Line 2 (accurate result)

corresponds to formula (142), the dashed line corresponds
to formula (150).

sius flow). It is assumed that mass transfer is com-
pounded with a volumetric reaction. In the diffuse
boundary layer approximation a corresponding prob-
lem on concentration is described by the equation and
boundary conditions

133 x dc 133 x? dc 0%
T T e @ ()
z=0,¢c=0; x=0,c=1; x=-00,c-0.

(152)

Here, the dimensionless quantities are introduced by
the formulae

z X C D313
2—;, xr_-z, C=C_'s’ a = Uw ,
a’KF(C,) ) O
k= ~DbC, fo= RC)
where U, is the unperturbed velocity far from the

plate, X the distance to the plate surface, Z the dis-
tance from the leading edge along a plate.

For convenience, equations (151) and (152) will be
replaced by the new variable

y=xz"" (153)
This yields a simpler equation
133 y e 1 8%

T ‘z'mg;"':—/i“"kf(d (154)

with boundary conditions
x=0,c=0;, y=0,c=1; y=o0,c—0.

In the parabolic equation (154) the role of the time

variable is played by z. The unknown quantities
J= —(0c/dx), .o and J = ~(dc/dy), - o, Which cor-
respond to problem (151), (152) and (154), (53), are
related as

(155)

With the use of the first modification of the
algebraic method (in Table 1 x, 7, j should be sub-
stituted by y, 2, J) expression (154) yields

1 1
J2 ;”_2}2.“;(

J=z"4

which, by virtue of equation (155), gives the equation
for a diffusion flow

P—kj~z"¥ =0, (156)

Taking into account the fact that the asymptotic
solutions of this equation are determined by

Jo=z"" (@=0); jo=k"'(@->wx) (157)

equation (156) will be presented in the following
form:

- (158)

In accordance with the ideas of the algebraic
method, not equation (157) but exact asymptotic solu-
tions of the initial problem (151) and (152) for z — 0
{7} and z - o0 should be substituted into equation
(158)

P ~izi=is=0.

Jo=103992""2 j = (U{M)E (159)
The above procedure gives
P =2k{fyj—(0.399)* 2% = Q. (160)

Note that for the first-order reaction (f=¢,
f=1/2) an analogous equation was derived by a
different technique in ref. [4].

According to the second modification of the
algebraic method, equation (154) generates the ordi-
nary differential equation

1/4J2 dz I/2

which, with regard for equation (155), can be re-
written as

(i61)

1
Ly d2,( 2 = ~k. (162)

The asymptotic solutions of this equation have the
form
Jo=2""2" (2 0); j, = k"2 (z ).
(163)

Eliminating z and k from expression (162) with the
aid of (163) gives

di 1 j  jAj*—~j2)
=Ly 2 el 164
djo 2Js Jo (ied)
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The sought equation for a diffusion flow is obtained
by substituting into equation (164) the exact asymp-
totics (159)

dj | PNz

d= T T T 20399)°

(165)

5.6. Mass transfer in turbulent flow in the tube inlet

section with a simultaneous volumetric reaction
Analyse the following equation :

@ :
x—c=—;(l+ax")g—c—-kf(c) (166)

0z @
which is a natural generalization of equations (23)
and (52). In combination with boundary conditions
(53), it describes mass transfer in turbulent flow in
the tube inlet section with a simultaneous volumetric
reaction.
The first modification of the algebraic method leads
to the equation

l — {2 g2
7= k
the coefficients of which should be refined by the
asymptotic correction method.

At a distance from the inlet section for z — < equa-
tion (168) changes over equation (26) which, after
refinement of the coefficients (by studying the limiting
cases kK =0 and k — o), is reduced to the form of
equation (33). This makes it possible, instead of equa-
tion (167), to write directly

(167)

1, ) S
—=j —a(;sm;)f =2k{f>.  (168)

At small z the asymptotic of equation (168) is deter-
mined by formula (108) thus allowing equation (168)
to be presented in the form

P-c (‘E sin gjj’“"—Zk(f)j—j?, =0. (169)

Finally, taking into account the fact that the exact
asymptotic solution of problem (166) and (52) leads
to expression (65), obtain the equation

1

. n.ony.,, . 3 ot
j’—a(;Snn;)j’ —2k<f>j—[r(l/3)]32—-0

(170)

which in the limiting cases z = o0 and & = 0 changes
over to equations (33) and (111), respectively.

According to rule (88), the second modification of
the algebraic method instead of equation (168) gives
the following ordinary differential equation :

dj__ 4 ”_1 . zt_ d4—n 2
o= +a<nsmrjj +2k{f> 2 (171)

which changes over to equation (33) for z — .

A. D. PoLYANIN and V. V. DIL'MAN

When z — 0, the asymptotic solution of equation
(171) has the form of equation (113).

Eliminating the coordinate z from equation (171)
with the aid of equation (113) gives

dj n
/ﬁﬁ =j'—0 (; sin L—Z)J’""—Zk(ﬁjz- (172)

Substituting the corresponding exact asymptotic
(65) into equation (172), the following equation can
be derived :

9 dj__ » n. ny., .
rasrda . 7 o\
+2K(O

Remark 3. When constructing an approximate
equation for a diffusion flow (by any modification
of the algebraic method) it is convenient to use the
following technique. Each term of the initial partial
differential equation is replaced by the quantity taken
from the right-hand column of Table 1 and multiplied
by some constant. These unknown constants, which
will occur in the resulting approximate equation, are
then calculated on the basis of an additional asymp-
totic study of the initial non-stationary problem in
some limiting cases. (A similar technique was used in
ref. [4] where approximate equations for diffusion
flows were derived intuitively.)

For example, acting in such a manner according to
the first modification of the method, the following
equation will be obtained in the latter problem instead
of equation (167):

(173)

1
E—=j~Adcj*"—Bk (174)
zj
where A, B, E are unknown constants.
Assume now simultaneously in equation (174) that
k = 0 and z = co. This will give
j=Al"g'" 175)

The corresponding exact asymptotic solution of prob-
lem (166) and (53) is given by formula (32). Equating
expressions (175) and (32) determines the constant 4

n. =z
A=<—sm—).
n n

For z = o0 and k — o it follows from equation
(174) that

(176)

j= BV, a7

Comparison of the quantity with the corresponding
exact asymptotic (42) yields for the coefficient B

B = 2k{/>. (178)
When z — 0, equation (174) yields
j=E"z71, (179)

Taking into account the fact that in this limiting case
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the exact asymptotic is given by formula (65), it is
possible to find the constant
E=3{[T(1/3)}> (180)
Substituting constants (176), (178) and (180) into
equation (174), in the long run yields equation (170).
Acting in a similar fashion, the second modification
of the algebraic method will give, instead of equation
(174), the following equation:
1dj
- H? %
As before, the unknown constants 4 and B are
found from the analysis of the limiting cases z = oo,
k =0and z = o0, k > co and are determined by for-
mulae (176) and (178). When z — 0, it follows from
equation (181) that

j=H"@2) ",

=j2— Ao "~ Bk. (181)

(182)

An exact asymptotic corresponding to the solution of
problem (166) and (53) for z—0 is given by
expression (65). Equating expressions (182) and (65)
yields the censtant

H=9[I(1/3))"2. (183)

Now, by substituting constants (176), (178) and
(183) into equation (181) one obtains equation (173).
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METHODE ALGEBRIQUE POUR LES PROBLEMES DE TRANSFERT DE CHALEUR
ET DE MASSE

Résumé—On présente une nouvelle méthode analytique approchée pour traiter les problémes de transfert
de chaleur et de masse et obtenir des équations algébriques simples pour les écoulements diffusionnels
(thermiques) et des nombres de Sherwood moyens. Les problémes considérés concernent le transfert de
masse pour un disque tournant, une plaque dans le sens de I'écoulement, une gouttelette sphérique et une
particule solide au cours d’une réaction volumétrique dont la vitesse est fonction de la concentration. On
¢étudie I'echange variable de masse entre une paroi et le milieu au repos, pour une réaction simultanée d’ordre
quelconque. Sont analysés le transfert de chaleur et de masse dans un écoulement turbulent a P'entrée du
tube, et d’autres problémes analogues,

EINE ALGEBRAISCHE METHODE ZUR LOSUNG VON WARME- UND
STOFFUBERTRAGUNGSPROBLEMEN

Zusammenfassung—Es wird eine neue analytische NZherungsmethode zur Untersuchung von Wirme- und
Stoffibertragungsproblemen vorgestellt, die es ermdglicht, thermische Diffusionsstrdmungen und mittlere
Sherwood-Zahlen mit einfachen algebraischen Gleichungen zu beschreiben. Es kénnen Probleme geldst
werden, die beim konvektiven Stoffiibergang an einer rotierenden Scheibe auftreten, an einer lings ange-
stromten Platte, an einem kugelférmigen Tropfchen und an einem festen Teilchen in Abhingigkeit einer
volumetrischen Reaktion, deren Intensitit beliebig konzentrationsabhingig sein kann. Es wird der insta-
tiondre Stoffaustausch zwischen einer Wand und einem ruhenden Fluid bei einer gleichzeitig auftretenden
volumetrischen Reaktion beliebiger Ordnung untersucht. Es wird der Wirme- und Stoffaustausch im
EinlaBbereich eines turbulent durchstromten Rohres sowie dhnlicher Probleme untersucht.

AJITEBPAMYECKUI METOJ MCCIIEAOBAHUSA 3AIAY MACCO- U TENJIONTEPEHOCA

Amsorssms—H3naraercs sopsii npaGmxeHunlt ananaTAYECKHE METOA KCCICHOBAHKER 33139 MAcCo-
TENIONEPCROCA, MO3BOAMOWHKE NOAYIaTh DpPocTHE anreSpanveckue ypaBHeRHA A MaddyImORHAIX
(Tennosnix) notoxos u cpeguux wacen Mepayna. PaccMOTpeHN 331241 0 KOHBSXTHBHOM MACCONIEPEHOCE
K BPAMAIOIEMYCH JNCKY, HpooMLHO obTexacMoll nnacThnke, cpepuvecxoil xanne 1 Taepnoit sacTune,
OpPH OpoTexaHHE 00BeMHOM peaKiiH, CKOPOCTL KOTOPOHK MPOR3BOLHLIM 06pa30M 3aBHCHT OT XOHIEHT-
paunu. Mccnenosan mecTAWMOHApHEIH MaccoOBMeH CTCHXM © HenoasmaHOM cpemoll, ocnomHeHHBI
obremuolt peaxmmeit moGoro nopAmKa. AHANH3UPYIOTCR TEILIO- H MACCONCPEHOC NPH TYPOYJICHTHOM
TCYCHHH HA BXOAHOM YYACTRE TPYOul B ApyTHE 331394 TAKOrO THNS.



