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Abstract-A new approximate analytical method for studying mass and heat transfer problems is presented 
which makes it possible to obtain simple algebraic equations for diffusion (thermal) flows and mean 
Sherwood numbers. The probhms are considered concerning convective mass transfer to a rotating disk, 
~on~t~i~~~y safe piate, a spherical droplet, and a soEd particle in the course of volmetric reaction 
the rate of which is arbitrarily dependent on concentration. Non-stationary mass exchange between a wall 
and a motionless medium with simuhaneous volumetric reaction of any order is studied. Heat and mass 

transfer in a turbulent flow in the tube inlet section and other analogous problems are analysed. 

IT IS WELL known that the solution of hnear ordinary 
arbitrary order differential equations with constant 
coefficients by the substitution of y = eL (where y is 
the dependent and x inde~ndent variables) is reduced 
to the soft&ion of algebraic equations of the same 
order to determine the exponent 1. 

Such an unambiguous correspondence between the 
mentioned types of differential and algebraic equa- 
tions suggested the possibility of trying to use similar 
ideas for an approximate analysis of much more com- 
plicated non-linear differentiaf equations with vati- 
able coe65ents. 

The present paper proposes a very simple and effec- 
tive approximate analytical method for studying Iin* 
ear and non-linear differential equations with variable 
coefficients (as well as equations with partial deriva- 
tives] which is based on the solution of auxiliary 
algebraic equations with subsequent use of the pro- 
cedure of asymptotic correction. An elementary tech- 
nique is described which allows the above-mentioned 
auxiliary algebraic equations for diffusion flows to be 
derived mentally. 

The suggested method for obtaining approximate 
relations rests on a well-balanced logical foundation 
(there exists a relationship between the algebraic 
method and the combination of the Galerkin method 
with that of asymptotic correction) and leads, in a 
number of cases, to accurate results. 

In view of simpb and formahzed principles of 
actions, tbe algebraic method is essentially a sort of 
‘approximate operational method’. It is welt illus- 
trated by the solution of different problems which are 
of interest for the theory of mass and heat transfer, 
chemical technology and physicochemical hydro- 
dynamics. 

1.2. Tk mf?&?d U~~y~Frurjc curreeriun 
First, a modifmd version of the method of asymp. 

totic correction will be described which will be further 
employed to present the algebraic method. 

Let the following expression be obtained for the 
unknown vahte S: 

S=QW (0 

which correctly reflects the qualitative behaviour of S 
as a function of the change in the dominant parameter 
p. The function rp is taken to be monotonous. Let 
the main terms of the asymptotic expansion of the 
approximate expression (I) in the limiting cases 
p-+Oandp-rco havetheform 

p-*O,S-+S~; p-,m,s-rs*, (2) 

where 

S$ = s,*cp), S$* = S$ip). (31 

Here and after it is assumed that S,fS,* f const. 
If similar exact asymptotics of the initiat problem 

solution are known 

p-+0, s-+s,; p-*ao, s-*s, (4) 

then the approximate formula (I) can be improved by 
the following simple means. Taking into account that, 
according to equations (31, the asymptotics of the 
approximate expressions of S,* and S*, depend on 
the parameter p, expression (1) can be given in the 
following form : 

This equation no longer depends explicitly onp (the 
substitution of the functions S = &), Sg* = S:(p), 
S, = F,(p) from equations (1) and (3) reduces equa- 
tion (S] to an identity). 
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NOMENCLATURE 

characteristic length scale (tube, radius, 
radius of droplets, bubbles and solid 
spherical particles) 
concentration in flow 
concentration on the surface (of a disk, 
tube, plate, particle, droplet, bubble) 
unperturbed concentration in a free 
stream (at the tube inlet ; at a distance 
from a particle, droplet, bubble, disk) 
dimensionless concentration, 
(C, - C)/(C, - C,) ; in problems with 
volumetric reaction it should be assumed 
that C, = 0, which corresponds to 
c = c/c, 
image of dimensionless concentration, 
pj,“e+cdr 
coefficient of diffusion 
function determining the kinetics of 
volumetric reaction, F(C) ; for the 
Nth-order reaction F = CN 
F(C)/F(C,) ; for the Nth-order reaction 
f=CN 
i:{(c) &;k; :,” Nth-order reaction 

= 

constant of volumetric reaction rate (KF 
is the rate of volumetric reaction) 
dimensionless constant of volumetric 
reaction rate, a*KF(C,)/DC,; for the 
Nth-order reaction k = a*KCr-‘/D 

Pe 
r 

Sh 

t 

ual 

x 

X 

Peclet number, aU,lD 
dimensionless radial coordinate ; r = I 
corresponds to the surface of a 
spherical droplet, bubble and solid 
particle 
spherical system of coordinates with 
origin fixed at the centre of a spherical 
droplet, bubble and a solid particle 
mean Sherwood number, 
- #, sin 0(&/&),, , d0 
time 
unperturbed flow velocity (at a distance 
from a plate, droplet, bubble, particle) 
distance (to the surface of a disk, plate, 
tube, wail) 
X/a. 

Greek symbols 

P ratio of dynamic viscosities of droplet 
and surrounding liquid (#? = 0 
corresponds to a gas bubble ; /? = co, to 
a solid particle) 

T(a) gamma-function, y(a, co) 

ITa, x) Ua) -da, -4 
y(a, x) incomplete gamma-function, 

J;~‘-l~-id[ 

s boundary layer thickness 
V kinematic viscosity of fluid 
5 dimensionless time, Dt/a*. 

Now, with asymptotics (3) of the appropriate for- 
mula (I) being substituted in expression (5) by the 
corresponding asymptotics of an exact solution of 
the initial problem (4), it is possible to obtain the 
following formula : 

Figure 1 schematically illustrates the application of 
the method of asymptotic correction when a = 0 and 
j.I > 0. 

Similarly, instead of the explicit initial relation (I), 
the implicit approximate relation G(S,p) = 0 can be 
considered. 

(6) 

which, besides being a correct qualitative description 
of the quantity S, usually provides an accurate result 
in the limiting cases p + 0 and p -+ 03 (in contrast to 
equation (1)). This is the essence of the method of 
asymptotic correction. 

Specifically, if asymptotics (3) have the form 

S,,=Ap”, S+, = Bps (a f fl) (3a) 
then the sought relation (6) can be presented as 

It is usually assumed that the structure of accurate 
asymptotics S,, and S, is analogous to that of equa- 
tion (3a) : the exponents a and p are the same, but the 
coefficients A and B are different. 

To illustrate the derivation of the sought function 
@, equation (6), the following quadratic equation will 
be considered (an example of implicit dependence) 

a$* +pSfao = 0. (7) 

At small p, equation (7) yields the ‘truncated’ equa- 
tion 

a2S$*+ao = 0 (p-0) (8) 

while at large p it gives for the growing asymptotic 

a2Sz+p=0 @-,cC). (9) 

Now, elimination of the parameters a,, and p from 
equation (7) with the aid of equations (8) and (9) 
yields 

s*-s,s-s: = 0 (10) 

where the asterisk at the asymptotics of the quantity 
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FIG. I. Scheme of the asymptotic correction method oper- 
ation for refining approximate relations. 

S has been already omitted for the eaSe of represen- 
tation. Equation (10) can be easily presented in the 
form of equation (6). 

Note that a rather comprehensive treatment of the 
method of asymptotic correction for the functions 
which depend on two parameters is made in refs. [l, 
21. Also given there are a great number of specific 
examples showing the use of this method in the prob- 
lems of convective mass and heat transfer. 

1.3. Guiding considerations 
Before beginning a discussion of the algebraic 

method, it will be useful first to consider simple argu- 
ments which provided the starting point for its for- 
mulation. 

It is well known that the solution of linear ordinary 
differential equations with constant coefficients 

d2y dy 
G+p;I;;+qy=O (p,q=const.) (11) 

(to be specific, the second-order equation is given) is 
sought in the form 

y=exp(-L) (12) 

thus leading to the following algebraic (quadratic) 
equation for determining the exponent : 

AZ-pL+q = 0. (13) 

The roots of equation (13) specify two linearly inde- 
pendent solutions of the initial differential equation 

(1 I). 

Suppose that the condition q < 0 is fulfilled and 
equation (11) is solved under the following boundary 
conditions : 

y(0) = 1, y(c0) = 0. (14) 

The solution of the problem (11) and (14) is given 
by expression (12) where 1 is the positive root of the 
quadratic equation (13). In this case a local flux at the 
point x = 0 has the form 

dy 
j=- dx =l* 0 x-0 

(1% 

It follows from this equality that the algebraic equa- 
tion (13) is virtually an equation for determining a 
local flux. 

We shall reformulate equivalently the two-point 
boundary problem (11) and (14) as an eigenvalue 
problem. For this, the independent variable in equa- 
tion (11) will be stretched according to the formula 

r = Ix. (16) 

This will yield 

zd*y dv 1 ~++~+qy=o. (17) 

The solution of this equation, which depends on the 
parameter 1, will be sought with boundary conditions 
(14) and with an additional normalization-type 
requirement 

5 = 0, dy/de = - 1. (18) 

The problem (17). (14) and (18) is equivalent to 
(11) and (14) and is virtually an eigenvalue problem. 
Namely, here, besides the solution y = y(i), one 
should also find the eigenvalue of 1 at which this 
solution is possible. In such an approach, the local 
heat flux will exactly coincide, by virtue of condition 
(18), with this eigenvalue of 1 (equation (15)). 

To illustrate the main idea of the method further it 
will be provisionally considered that the exact solution 
of problem (17), (18) and (14) is unknown. Moreover, 
it will be assumed that the main sought characteristic 
of the problem is the local heat flux, i.e. the eigenvalue 
of It. 

The eigenvalue of 1 can be approximately deter- 
mined in the following simple way not resorting 
to the solution of the differential equation (17). 
Namely, making use of the ideas behind the Galerkin 
method, multiply equation (17) by weighting function 
w = w(c) and then integrate the expression obtained 
over < from zero to infinity assuming that all the 
integrals converge. This yields 

1*A2+ApA, +qAo = 0. (1% 

Here, the coefficients A,,, are given by the expression 

co co 

A 0= s wydC, A, = 
0 JO 0 

w f$ d< (20) 

wherem= 1,2. 
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An approximate algebraic equation for determining 
the eigenvalue of 1 will be found from the integral 
identity (19) and (20) assuming thaty = $(t), where 1/1 
is some prescribed function which satisfies boundary 
conditions (14) and (18). The values of the coefficients 
AO, A,, A2 (equation (20)) are calculated and ex- 
pression (19) turns out to be a quadratic equation 
for obtaining the unknown parameter 1. 

Now, the coefficients of this approximate equation 
should be refined by asymptotic correction [ 1, 21 
making use of the more simple, than initial, auxiliary 
problems (17) (18) and (14) in two limiting cases (for 
example, when p + 0 and p + a)). 

Accurate to the obvious redesignations 1-t S, 
AI/AI --+ a2, qAO/AI -) ao, the approximate equation 
(19) coincides with the quadratic equation (7). There- 
fore, after the asymptotic correction the following 
equation results : 

A2-l,l--I; = 0 (21) 

which is obtained by substituting S with 1 in equation 
(10). On the other hand, this very form can be 
obtained for the exact equation (13) if account is taken 
of the fact that whenp + co andp -t 0, its asymptotics 
are given by the formulae 1, = p and 2: = -4. There- 
fore, in the considered case of the linear equation 
with constant coefficients (11) the above-mentioned 
procedure for approximate determination of the 
eigenvalue of 1 leads to an exact result, equation (13). 

2. PROBLEMS OF MASS AND HEAT TRANSFER 

DESCRIBED BY ORDINARY DIFFERENTIAL 

EQUATIONS 

2.1. Description of the algebraic method 
Two important points should first be outlined 

which will be required further. It follows from the 
comparison of the differential (17) and algebraic (19) 
equations that the latter may be obtained if all the 
differential terms and unknown functions are formally 
substituted by some constants. Account should also 
be taken of the fact that the final finding of the method 
of asymptotic correction is independent of the specific 
values of the coefficients A,,, and therefore, it is even 
possible without loss in accuracy not to calculate them 
from equations (20) at the given functions y = $(<) 
and w = w(e) but, for simplicity, to take them directly 
tobeequaltoA,= &I. 

The above-described simple means of deriving an 
approximate algebraic equation for a local flux (or, 
which is the same, for the eigenvalue of A) is easily 
extended to much more complex non-linear ordinary 
differential equations with variable coefficients the 
exact solution of which is already unknown. Namely, 
an algebraic equation for a local flux can be directly 
obtained from the initial differential equation via the 
simple formal procedure : an independent variable is 
introduced according to equation (16), after which 
all of the dimensionless dominant parameters of the 
problem (for equation (11) these are p and q) and 

the quantity 1 = j is fixed at its locations, whereas 
the remaining terms (derivatives, functions and 
‘stretched’ coordinates) are substituted by the con- 
stants which, without loss of generality. can be taken 
equal to unity. 

This simple basic scheme substantially saves time 
and makes it possible to mentally deduce the sought 
approximate algebraic equation for a local flux. It 
results from the integration of the differential equation 
(obtained after the extension of equation (16) and 
multiplication by the weighting function IV(~)) over 
the coordinate e from zero to infinity and subsequent 
assignment of some specific profile ,r = $(<) with the 
use, at the final stage, of the method of asymptotic 
correction for the thus found algebraic equation. The 
errors, which are introduced in such an approximate 
approach, are attributable to the fact that the exact 
solution of the initial boundary-value problem, ob- 
tained after the substitution of equation (16) is 
generally dependent not only on the stretched coor- 
dinate 5 but also on the dimensionless parameters of 
the problem: y = y({;p,q). 

As usual, in specific problems of convective mass 
and heat transfer and chemical hydrodynamics, the 
designation y = c will be used for dimensionless con- 
centration and equation (16) will be stretched by the 
formula 

x = {Ii (22) 

in which relation (15) has already been taken into 
account. When passing over from the stretched differ- 
ential equation to the algebraic one, all the coor- 
dinates, functions and derivatives are substituted for 
(+ 1) except for the first derivative dy/d<, which is 
replaced for convenience by the negative value (- 1) in 
conformity with the physical implication, since under 
boundary conditions (14) the inequality dy/d< < 0 
takes place. 

Specific examples will now be considered which 
illustrate the possibilities of the method suggested. 

2.2. Turbulentjluidjlow mass transfer compounded by 
a volumetric chemical reaction 

First, the following boundary-value problem for a 
second-order non-linear ordinary differential equa- 
tion with variable coefficients will be considered : 

&[(l+oY$]-k/(c) =0 (23) 

x=o,c= 1; x--roe; c-+0. (24) 

At n = 3, equation (23) describes the turbulent fluid 
flow mass transfer, compounded by a volumetric 
chemical reaction, near the tube walls far from the 
inlet section [3, 41. In this particular case the dimen- 
sionless parameters and variables appearing in the 
formulation of problem (23), (24) are introduced by 
the formulae 
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X C 
k aZKF(C,) F(c) 

x=--, c=--, = 
a G DC, 

9 f(c) =F(c,)* 

where a is the tube radius; X the distance reckoned 
from the tube wall ; C the time-averaged reagent con- 
centration in the flow; C, the concentration on the 
tube surface ; K a constant of the volumetric chemical 
reaction rate; W = U(C) the volumetric reaction 
rate; D the diffusion coefficient; DT the turbulent 
diffusion coefficient; to the shear stress on the tube 
wall ; p and v the density and kinematic viscosity of 
fluid, respectively; yT some empirical constant. 

Henceforth, the value of the parameter n will not 
he specified. It will only he assumed that the condition 
1 c n < cc is fulfilled. An exact solution of problem 
(23) and (24) is unknown, therefore, it will be analysed 
by the algebraic method. 

According to the method given above, the coor- 
dinate x in equation (23) will be stretched by equation 
(22). This will yield 

-k{f(c)} = 0. (25) 

Substitution of the expressions within braces, taking 
account of their sign, by the values f 1 gives the 
algebraic equation for a diffusion flow 

J .2_oj2-* -k = 0. (26) 

Further assuming successively in equation (26) that 
u = 0 and k = 0, the asymptotics of the quantity 
j =j(c, k) are found 

j(0, k) = Jk, j(u, 0) = a’/‘. (27) 

Eliminating from equations (27) the parameters u 
and k in terms of j(0, k) and j(a, 0), equation (26) 
for a diffusion flow can be rewritten in the following 
form : 

j*(u, k) - j”(u, 0) j2-“(0, k) - j*(O, k) = 0. (28) 

To obtain the sought algebraic equation for j, it is 
necessary, from the initial differential equation (23) 
taking into account boundary conditions (24), to find 
exact values of the asymptotics j(u, 0) and j(0, k) and 
substitute them into relation (28). 

At u = 0, the solution of problem (23) and (24) can 
be written in an implicit form 

x=l’[2klf(c*)dcW]-“*dcf. (29) 

The diffusion flow j = - (dc/dx),, o, corre- 
sponding to relation (29), is determined by the for- 
mula 

j(0, k) = (2kW) I”, <f> = 

In the other limiting case, at k = 0, the solution of 
problem (23) and (24) is given by the expression 

thus leading to the following value for the diffusion 
flow : 

n 7c 
j(u.0) = 6”” ; sin ; . ( > 

The substitution of formulae (30) and (32) into 
equation (28) enables the following sought approxi- 
mate algebraic equation for the diffusion flow to be 
derived : 

j2-” - 2k( f) = 0. (33) 

In a specific case of the first order volumetric reac- 
tion, corresponding to linear equation (23) at f = c, 
the cubic equation (33) at n = 3 and (f) = l/2 was 
obtained in ref. [4] by another technique. A com- 
parison was also made in this work between the root 
of this approximate equation and the data of direct 
numerical integration of the full initial two-point 
boundary-value problem (23) and (24) at n = 3, f= c 
which showed a good agreement of these results for a 
diffusion flow (within 5%). 

For the Nth-order volumetric reaction, which cor- 
responds to f(c) = CN, it should be assumed in equa- 
tion (33) that (f) = (N+ I)-‘. 

2.3. Mass transfer to the surface of a disk rotating in 
a fluid in the course of a volumetric reaction 

Consider now the non-linear problem 

$+Px”‘$=kf(c) 

x=o,c= 1; x+co,c+o (35) 

which at m = 2 describes the concentration field in the 
vicinity of the disk rotating in a fluid. In this case 
dimensionless quantities are introduced by the for- 
mulae 

X C 
x=--, 

a 
c=-, 

G 
P=O.5$, 

v 112 
a= - , 

0 

a’KF(C) 

w kf (4 = r 
I 

where X is the distance to the disk surface, o the 
angular velocity of disk rotation. 

Problem (34) and (35) also describes the con- 
centration field in the vicinity of the forward stag- 
nation point of a spherical droplet (at m = 1) and of 
a solid particle (at m = 2) immersed in a translational 
Stokes flow at large Peclet numbers (in these cases, 
the parameter P coincides with the Peclet number 
accurate to the constant factor). 

To approximately analyse problem (34) and (35), 
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use will be made of the algebraic method. After trans- 
formation of equation (22), equation (34) takes on 
the form 

j2 {$) +Pj’-m {t$} = k{_/-(c)]. (36) 

All the quantities within braces will be substituted for 
&- 1, and this will give the algebraic equation for the 
diffusion flow 

j2 -Pi’-” = k. (37) 

Now, asymptotic correction of equation (37) will 
be made by the limiting values of the parameter k. At 
k = 0 equation (3’7) gives 

j,, = p'/(m+') (k = 0). (38) 

For large k, when m > 0, equation (37) yields 

j, =Jk (k+co). (39) 

Further, eliminating the quantities k and P from 
expressions (37)-(39) gives the following approximate 
equation : 

j2_j~+tjn-t_j$ =O. (40) 

It is into this formula that the corresponding 
asymptotics of the solution of the exact problem (34) 
and (35) should now be substituted. 

At k = 0, the solution of problem (34) and (35) has 
the form 

c=rexp(--&Y”+‘)dx/ 

rexp(-&Y”+‘)dr. 

Hence, the local flow will be given by 

j. = (m+ 1) l,‘_+l~[~(~)~‘pl,~m+l~ (41) 

where T(m) is the gamma-function. 
When k -B co, the second term on the left-hand side 

of equation (34) can be neglected. The solution of 
the corresponding ‘truncated’ problem is given by 
formula (29) and the diffusion flow is determined by 
the equation 

j, = (2K0)“2, (f> = 0’ f(c) dc. 
s 

(42) 

Substituting the exact asymptotics (41) and (42) 
into equation (40) gives the sought approximate 
algebraic equation for the diffusion flow 

j*-(m+l)” [r(-&)Jm-‘Pj1-m-2k<f> = 0. 

(43) 

It follows from the results of Section 1 that in the 

case of the first-order volumetric chemical reaction 
cf= c, (f) = l/2) at m = 0 equation (43) is accurate. 

Remark 1. When deriving approximate algebraic 
equations, it is possible not to take into account the 
sign of the first derivative. In other words, all the 
terms, without exception, omitted in the initial differ- 
ential equation can be substituted by unity (i.e. there 
is no need to keep additional information in memory). 
The subsequent procedure of asymptotic correction 
by all means will automatically lead to a correct result. 
For example, having omitted the terms within braces 
of differential equation (36), it is possible to obtain 
the following equation instead of equation (37) : 

j2+Pj'-" =k Wa) 

(here the sign of the first derivative has been dis- 
regarded already). Letting the parameter k in this 
equation approach zero yields 

P= -jT+’ (k=O). @a) 

In the other limiting case, when k + 03, asymptotic 
(39) is obtained, with the inequality m 2 0 being taken 
into account. 

Eliminating the parameters P and k from ex- 
pressions (38a) and (39) in terms of j0 and j, and 
further substituting them into formula (37a) give the 
same algebraic equation (40). 

It will be shown now in what way the above method 
can be applied to approximately analyse linear para- 
bolic equations the coefficients of which are inde- 
pendent of time, and particular problems will be con- 
sidered. 

2.4. Non-stationary mass exchange of a wall with a 
quiescent medium in the course of a jirst-order volu- 
metric reaction 

Mass exchange of a wall with a quiescent medium 
compounded by a first-order reaction is described by 
the following dimensionless equation, initial and 
boundary conditions : 

ac a% kc -=-- 
a7 ax2 

T=o,c=o; x=O,c=l; x-Pco,c+o. 

(45) 

Making use of the Laplace-Carson transform 

I‘ 

co 
E=p e-p c dr (46) 

0 

reduce the problem for the partial differential equa- 
tion (44) and (45) to the problem for the ordinary 
differential equation with the complex parameter p 

2 = (p+k)P (47) 

x=0, E= 1; x+co,c’+o. (48) 

Similar to equation (22), substitute x = S/T in 
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equation (47). where jis the image of the diffusion 
flow. As a result, obtain 

= (p+k)fEf‘ 

In accordance with the algebraic method omit the 
quantities within braces. This gives a quadratic equa- 
tion for jthe solution of which has the form 

J= @+k)“2. (50) 

It is easy to verify that expression (50) does not 
need asymptotic correction, because it gives accurate 
asymptotics in the limiting cases when p * 0 and p + 
cc. Therefore, applying the inverse Laplace-Carson 
transform to equation (SO) [S], the formula for the 
diffusion flow can be found 

’ Jtnr, ‘=-exp(-kt)+JkerfJ(kr). (51) 

It is not difficult to show that expression (51) 
coincides with the results of the exact solution of the 
initial probfem (44) and (45). 

2.5. Mass and heat transfer in rurbulent$ow in the 
tube inlet section 

Consider a turbulent flow with constant physical 
properties in a round tube of radius a. Assume that 
the admixture ~ncentration in the initial section at 
2 = 0 is equal to C, (Z-axis is directed along the tube 
axis), whereas on the tube wall at X = 0 it is equal to 
C,. At large Schmidt numbers the main resistance 
to mass transfer is concentrated in a thin diffusion 
boundary layer adjacent to the tube surface. In this 
region, the dist~bution of fluid velocities can be taken 
linearly dependent on the distance to the tube walls 
and the normal component of the turbulent diffusion 
can be described by the main term of expansion when 
X-PO. 

Under the assumptions made the distribution of the 
time-averaged con~t~tion in the tube inlet section 
is described by the following equation and boundary 
conditions [6] : 

(52) 

z=o,c=o; x=O,c=I; X--,&&f+0 (53) 

where 

C,-C 

C=Cm- r= 

oM0)2Z 
8v’ 

(a> is the section-averaged fluid velocity; the rest of 
the dimensionless values are introduced analogously 
to equation (23). 

Application of the Laplace-Carson transform (46) 
(in which 7 is substituted by z) to problem (52) and 
(53), gives the ordinary differential equation 

x=0,3=1; X’#,i:--,O. (55) 

In accordance’with the algebraic method, stretch 
equation (54) by the formula x = {/A where jis the 
diffusion flow image. As a result, obtain 

(56) 

Omitting the terms within braces gives the algebraic 
equation with the complex parameter p 

;3_bp-a_p = 0. (57) 

At n = 3 the solution of equation (57) is given by 

i’= (a+p) “3. (58) 

Application of the inverse Laplatiarson trans- 
form to equation (58) [SI gives the diffusion ffow 

g113 

’ - I-(2/3) 
- - [y(f, cr.++ (a~)- ‘13 exp (-IX)] (59) 

where 

Y(%X) = 
5 

XI’I ’ e-< dc 
0 

is the incomplete Emma-function, I”(a) = 7(x, 00) is 
the gamma-function. 

This formula should be refined by the method of 
asymptotic correction. Asymptotics (59) at small and 
large z have the form 

1 

j” = I-(21’3)~“~ 
(z-+0); i, =fF (z--,co). (60) 

Elimination of z and u from equations (59) and (60) 
yields 

.i 1 
z = r(2/3)Y(B 4-k j, Jo,-* (61) 

where 

Now find the exact asymptotics of the sofution to 
the initial problem (52) and (53) at n = 3. 

When z -) 03, the left-hand side of equation (52) 
can be neglected. The solution of the corresponding 
‘truncated’ problem is given by formula (31). At n = 3 
it leads to the following expression for the limiting 
diffusion flow : 

3”’ 
1rO=---o 113 

2R 
(2 -, cc). (62) 

It can be shown that at small z the second term 
on the right-hand side of equation (52) is small as 
compared with the first one. Therefore, to find the 
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sought asymptotic it is necessary to consider the equa- 
tion 

ac a5 
“az=ax’ (63) 

with boundary conditions (53). The solution of this 
problem is given by 

Differentiating expression (64) with respect to x and 
assuming x = 0, it is possible to calculate the diffusion 
flow 

3U3 1 

jo=r(1/3)p (2 + 0). (65) 

In accordance with the algebraic method, the exact 
asymptotics (62) and (65) should be substituted into 
formula (61). The resulting approximate relation 
j =j(z), which is not written out here, will give an 
accurate result in the limiting cases when z -) 0 and 
z-+co. 

3. PROBLEM OF A STATIONARY DIFFUSION 

BOUNDARY LAYER (PARTIAL 

DIFFERENTIAL EQUATIONS) 

3.1. Description of the algebraic method 
In those cases when the necessity arises to study 

stationary boundary layer equations, described by 
partial differential equations, the proposed method 
for deriving approximate algebraic equations to deter- 
mine the integral mean characteristics of the problem 
virtually does not change and remains the same as 
for ordinary differential equations. In this case the 
stretching of the boundary layer coordinate x, 
directed normal to the body surface, should be made 
by equation (22), where, by virtue of the analogy 
principle [2], the local flux j can be immediately 
replaced by the mean Sherwood number, i.e. it can be 
assumed that 

(66) 

After the above mentioned transformation, the 
dimensionless parameters of the problem and the 
sought value Sh, will be retained whereas the remain- 
ing terms will be formally assumed, as before, to be 
equal to + 1 depending on their sign. The fulfillment 
of these operations gives an approximate algebraic 
equation for the sought quantity Sh, which should be 
improved by the method of asymptotic correction. It 
should be especially emphasized that here, in deri- 
vation of the algebraic equation, the additional depen- 
dence of the equation coefficients and differential 
operators on the longitudinal coordinates directed 
along the body surface is disregarded (the cor- 
responding terms are replaced by unity) ; thus the lost 
information will be partially compensated for further 

as a result of the use of the asymptotic correction 
technique thus leading to the refinement of the 
coefficients of the unknown approximate equation for 

mass and heat transfer coefficients. 
The algebraic method described above with ref- 

erence to the partial differential equations is equi- 
valent in a number of cases to the sequential 
accomplishment of the following three stages : first, a 
degenerate auxiliary problem on the distribution of 
concentration near a singular point of incidence is 
formulated which is already described by an ordinary 
differential equation (i.e. actually, the second-order 
model problem is considered at the first stage, see ref. 
[2]); then, this auxiliary problem is solved by the 
Galerkin method ; at the last stage the auxiliary 
relation obtained at the intermediate step for the local 
flow is appropriately rewritten in terms of asymp- 
totics, thus finally leading, with the aid of the simi- 
larity principle [1,2], to the desired approximate equa- 
tion for the mean Sherwood number. 

3.2. Diffusion to a droplet at large Peclet numbers 
within the entire range of phase viscosities 

Consider a stationary convective diffusion to the 
surface of a spherical droplet of radius a in a trans- 
lational Stokes flow (Hadamard-Rybchinsky flow) at 
large Peclet numbers. It is assumed that the con- 
centration on the droplet surface and far from it are 
constant and equal to C, and C,. respectively. In 
dimensionless variables and in the spherical coor- 
dinate system r, 0, fixed in the droplet, the cor- 
responding boundary-value problem (written in the 
diffuse boundary layer approximation) is [2] 

-2 cos 0(l,x+Azx2)$ 

(67) 

x = 0, c= I ; x + 00, c + o(e = 0, acjao = 0) 

(68) 

cm-c 
c=m- x=r-I, Pe=f$, 

1 . 
i., = z(B+1)’ Al = I. 

Here C is the concentration in the flow, D the 
coefficient of diffusion, U, the flow velocity far from 
the droplet, B the ratio between the dynamic viscosities 
of the droplet and surrounding fluid (fi = co cor- 
responds to a solid particle and /I = 0 to a gas bubble). 

Note that in equation (69) instead of the exact value 
of the second coefficient A2 = (38+2)/(48+4) its 
asymptotic for b + co is taken. The validity of this 
simplification of the problem at large Peclet numbers 
is proved in ref. [2]. 

To analyse problem (67)-(69), use is made of the 
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algebraic method. For this purpose equation (66) is 
substituted into equation (67). This will yield 

Pe 1 ac 1 ac Pe 

8+1 
-(cosflg+jsinB-gj +s 

I 

X 1 -~~zcosBE+~~sintl~ 1 at 2 

which, together with boundary conditions (35), 
describes the distribution of concentration in the 
diffuse boundary layer of the droplet in the course of 
a volumetric reaction which takes place in the phase 
and the rate of which depends arbitrarily on con- 
centration. 

Making use of equation (66), transform equation 
(76) into 

a5 1 I Pe 

I 

ac i ac 
=Sh2 ay2 . (70) 8+1 -~cos6~+5sin6-jj 

1 

Replacing all the terms within braces in equation 
(70) by f 1 gives a cubic equation 

Pe 

sh’ fl+l 
--Sh-Pe=O. (71) 

Taking into account the fact that the condition 
Pe >> 1 is fulfilled, consider two limiting cases : j? - 1 
and fi = co. In the first case which corresponds to 
a droplet with moderate viscosity, the last term in 
equation (71) can be neglected when Pe + a). This 
leads to the asymptotic 

Pe ‘/’ 
Sh, = 8+1 ( ) (B N 1). (72) 

At /I = 00, corresponding to a solid particle, obtain 
from equation (71) 

Sh, = Pe’j3. (73) 

Elimination of the parameters /I and Pe from 
expressions (7 l)-(73) yields the sought cubic equation 
for the mean Sherwood number 

Sh3-Shish-Sh: = 0 (74) 

which was derived earlier in refs. [l, 21 by a different 
technique. 

It is necessary to substitute into equation (74) the 
exact asymptotic solutions of problem (67) and (68) 
which were obtained at 

. 1 

1’=2(8+1)’ 
A,=0 and I,=O, AZ={ 

in ref. (71 

sh, = -!?- 
[ 1 

l/2 

37@ + 1) 
, Sh, = 0.624Pe’13. (75) 

In ref. [2] the approximate formula (75) is com- 
pared with the results of numerical calculations; the 
comparison showed its high accuracy at large Peclet 
numbers within the entire range of change of the par- 
ameter /.I. 

3.3. Mass exchange between a droplet and a flow 
compounded by a volumetric reaction 

The following non-linear equation is now studied : 

Pe 
-(-xcos8$+~sinB~)=$-k/(c) 
B+l 

azc 
= Sh2 ay2 -k{f(c)}. { I 

Omitting further the terms within braces, obtain a 
quadratic equation 

Pe 
Sh2 ‘~+l+k. (77) 

Allowing for the fact that the asymptotics of equa- 
tion (77) have the form 

Sh 0 = fi “‘(k+O); 
( ) 

Sh, = k”2(k+ 50) 

the solution of equation (77) will be represented in 
the following form : 

Sh = (Sh:+Sh’ )I” ‘0 . (78) 

The exact asymptotic of the solution of problem 
(76) and (35) for k + 0 and k -* co should be sub- 
stituted into the latter expression. At k = 0 equation 
(76) passes over to equation (67) at I, = 0; its solu- 
tion leads to the Sherwood number Sh = Sh, the right- 
hand side of which is written out in equation (75). 
When k --, co, the left-hand side of equation (76) is 
inessential, and the corresponding solution can be 
represented in an implicit form (29). In this limiting 
case the Sherwood number will be determined by the 
right-hand side of equation (30). 

Substituting the above-mentioned asymptotics into 
equation (78), find the sought relation for the Sher- 
wood number 

&+2k ‘fW s 1 
‘I2 

Sh = . (79) 
0 

It follows from the comparison [8] of equation (79) 
with the results of the exact solution of problem (76) 
and (35) for the first-order reaction that the maximum 
error of equation (79) at f(c) = c is around 7% 
within the entire range of change of the parameter 
k(0 Q k < 00). 

3.4. Mass exchange between a solid particle and aflow 
compounded by a volumetric reaction 

Consider the non-linear equation 

Pe 
( 

ac 3 ac 
-~x2cos8-+fxsin6- 

ax de > 

(76) 
= 2 - kf(c) (80) 
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which together with boundary conditions (35) de- 
scribes the concentration field in the diffuse bound- 
ary layer of a solid spherical particle in a translational 
Stokes flow. It is assumed that a volumetric chemical 
reaction takes place in the liquid. 

The substitution of equation (66) leads equation 
(80) to the form 

Pe 

{ 
35z 

a~ 3 ac 
si; -2 cos6~+~2t:sinB~ 

1 

= ShZ $ -k{f(c)}. 1 I 
Omitting the terms within braces gives the cubic equa- 
tion 

Sh’-kSh-Pe=O. 

It can be easily verified that equation 
rewritten as 

Sh’-Sh; Sh-Sh; = 0 

where Sh, and Sh, are the asymptotic 
equation(81)fork+Oandk+co. 

(81) 

(81) can be 

(82) 

solutions of 

It is necessary now to substitute the corresponding 
exact asymptotic solutions of problem (80) and (35) 
into equation (82). At k 2: 0, equation (80) coincides 
with equation (67) at L, = 0; its solution gives the 
Sherwood number ShO = 0.624Pe”‘. When k + to, 
the Sherwood number will be prescribed just as in the 
case of a droplet, by the expression Sh, = (2k(f)) “2. 

Substituting these exact asymptotics into equation 
(82), obtain the sought cubic equation for the mean 
Sherwood number 

Sh3-2k(f)Sh-a Pe = 0 

where a = 0.243 z (0.624)‘. 

(83) 

4. TWO MODIFICATIONS OF THE ALGEBRAIC 

METHOD OF STUDYING NON- 

The algebraic method can also be successfully used 

STATIONARY PROBLEMS (PARTIAL 

to solve non-stationary problems when the charac- 
teristics of the process differ greatly with time. In this 

DIFFERENTIAL EQUATIONS) 

case the main formal scheme of method application 
admits two different modifications. First, each of these 
will be briefly described and then the results of the 
solution of a number of specific non-stationary prob- 
lems by both methods will be analysed and compared. 

It should be noted that, in both the first and second 
modifications, preliminarily the coordinate x is 
stretched according to rule (22) with subsequent fix- 
ation of all the dimensionless parameters of the prob- 
lem and of the diffusion flow at their places and sub- 
stitution of the remaining terms, which incorporate 
the derivatives with respect to coordinates and the 
functions of dependent and independent variables, by 
the values f 1 (according to their sign), just as it was 

done earlier in stationary problems. The approaches 
differ only in the way of the substitution of the non- 
stationary term which involves a partial derivative 
with respect to time dc/dr, where r is the dimensionless 
time. In the limiting case of infinitely large times (when 
r + co) both modifications lead to identical results 
corresponding to the solution of the same stationary 
problem. 

4. I. The first modification of the algebraic method 
It involves the formal substitution of the partial 

derivative with respect to time in a differential equa- 
tion by the algebraic relation according to the fol- 
lowing rule : 

ac I 

as’;’ 
When refining the coefficients of the thus obtained 
algebraic equation by the method of asymptotic cor- 
rection, the dimensionless time is already considered 
to be a new additional parameter (i.e. when improving 
the algebraic expression, use is made of the exact 
asymptotics of the initial problem in the limiting cases 
r-+Oandr+cO). 

In other words, the first modification of the 
algebraic method consists in the sequential fulfillment 
of three operations: first, the derivative &/dr in the 
differential equation is substituted according to rule 
(84) ; then the coordinate x is stretched by equation 
(22) ; after this all of the initial dimensionless par- 
ameters of the problem and the additional quantities 
jand ‘t are fixed at their places and the rest of the terms 
are replaced by + 1. A simple physical explanation 
for this formal technique of obtaining approximate 
algebraic equations will be presented in Section 4.2 
(see Remark 2). 

4.2. The second modification of the algebraic method 
The second modification of the algebraic method 

is somewhat more complex. It consists of a formal 
substitution of the partial time derivative by the fol- 
lowing complex which involves the ‘direct’ derivative 

ac 1 dj 

%“-5Z* 
(85) 

This, at first sight rather complicated rule can be 
easily explained when it is remembered that there is a 
complete identity between the algebraic method and 
the combination of the Galerkin method with the 
method of asymptotic correction in application to 
stationary problems described by ordinary differential 
equations. Now, requiring the fulfillment of the equiv- 
alency of the above methods also more complex non- 
stationary problems, which are formulated for partial 
differential equations it is possible to show that this 
requirement will lead to the above correspondence 

(85). 
In fact, in the integral methods the solution of non- 

stationary problems is sought in the form c = $(x/S), 
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where 6 = 6(r) is the boundary layer thickness which 
already depends on time. For the initial and boundary 
conditions (45) under consideration the concentration 
profile # and the function S should satisfy the con- 
ditions $(O) = 1, Jl(co) = 0,6(O) = 0. In accordance 
with the Galerkin method multiply the derivative 
aclaz by any weighting function of the type 
tv = ~(~16) > 0. Integration of the resulting expres- 
sion over x from zero to infinity leads to the follow- 
ing set of equalities : 

where the reIation j- const. 6-l was taken into 
account. It is assumed that the remaining part of 
the equation is a sum of the terms of the form 
f(c)x”(a”c/W’). Being multiplied by the weighting 
function w and integrated over x from 0 to CD, these 
quantities are transformed by 

const. 
= I (j”‘-“). (87) 

It is precisely the comparison of expressions (86) 
and (87) with regard for the method based on the 
stretching of equation (22) for stationary problems 
(see Section 2), and also the use of the fact that the 
specific values of constants in the initial approximate 
formula are inessential for the method of asymptotic 
correction which leads to rule (85). 

From the foregoing, it is clear that the above modi- 
fication of the algebraic method for obtaining 
approximate relations includes three stages: first, a 
non-stationary term of the partial differential equa- 
tion is substituted by a differential term according to 
rule (85) ; then the spatial coordinate is stretched by 
formula (28) and, finally, all of the dimensionless par- 
ameters and quantities j and dj/dr are fixed at their 
places whereas the remaining factors are substituted 
by the constants .equal to + 1. After that, the thus 
obtained differential equation is solved. At the third 
stage, according to genera1 rules, the solution is refined 
by the asymptotic correction method; now the time r 
enjoys already the same right as do the dimensionless 
initial parameters of the problem. 

It follows from the comparison of expressions (84) 
and (85) that the transition from the algebraic equa- 
tion for a diffusion flow, obtained by the first modi- 
fication of the method, to an ordinary differential 
equation, derived by the second modification of the 

method (and conversely), is accomplished by means 
of the simple correspondence 

I 1 dj 

-“-7Z’ t 
(88) 

This rule of transition is most useful when applied 
at the final stage after asymptotic correction of the 
algebraic equation coefficients thus making it possible 
to directly obtain a differential equation which gives 
a correct result in the limiting case z -, co. 

The approximate solutions obtained by both modi- 
fications of the algebraic method coincide at small 
and large times. However, there is one substantial 
qualitative difference in them: the solution of the 
algebraic equation, which corresponds to the first 
modification of the method, decreases in the power- 
law fashion at large times, whereas the solution 
of the differential equation derived by the second 
modification of the method damps out much quicker 
exponentially. 

The now available exact solutions of non-stationary 
mass and heat transfer problems have a decreasing 
exponential character with r -+ 03. This important 
fact suggests that the second modification of the 
algebraic method leads to more accurate results. 
Nevertheless, it will be shown further on specific 
examples, that the first modification of the method 
also gives good results which can be used directly in 
engineering practice. 

Remark 2. Some considerations will now be given 
which were involved to formulate the first modi- 
fication of the algebraic method. It is assumed that the 
Galerkin method gives the equation for the boundary 
layer thickness S. Let the quantity 6 be limited at large 
times 

lim S ic co. r--m (8% 

The requirement that 6(O) = 0 at small times gives 
the following approximate equality for the derivative 
da/dz : 

g-f (?30). 

On the other hand, by virtue of equation (89) at 
large times the ratio S/r and the derivative d&dr have 
the same asymptotics 

d6.-?O 6 z , ;‘O (7+00). (91) 

Allowing for the fact that in both limiting cases, 
T -, 0 and T --) 00, the quantities d&dt and 6/r behave 
identically, it is possible in the equation for the bound- 
ary layer thickness to substitute the differential term 
by the algebraic one according to the rule 

dc5 S 
&=Y* (92) 

The use of the relationship between the boundary 
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Table 1. Master table of the main rules of the algebraic method operation 

Term in the initial 
differential equation 

(parabolic type) 

Rule of substitution in the 
derivation of an approximate 
equation for a diffusion flow j 

1 
; the first modification 

I dj 
- - the second modification 
j dr 

g(r) 

k characteristic parameter of the 
probIem (used for asymptotic 
correction) 

g(r) 
k 

Note. When derived, the approximate algebraic (differential) equation for the 
diffusion flow j should be. refined by the method of asymptotic correction. 

layer thickness and the diffusion flow d = consty 
makes it possible to obtain from equation (92) that 

ldj 1 
-Y&=-G. 

Correspondence (93), which is analogous to cor- 
respondence (88), allows one to pass over from the 
second to the first modification of the algebraic 
method. Therefore, the first modification of the 
algebraic method is equivalent to the successive use 
of the Galerkin method, approximate substitution of 
the derivative rule (92), transition from the boundary 
layer thickness 6 to a diffusion flow by the formula 
j = const./b, and to the application of asymptotic cor- 
rection at the final stage of the method. 

4.3. faster table of the main rules of the algebraic 
method 

ac a*c 
;i; = -Q -k_f (4 

Taking into consideration the foregoing, it is not 
difficult to compile a simple master table of the main 
rules of the algebraic method operation (see Table 1) 
which makes it possible to quickly derive the sought 
algebraic equations for the diffusion tiow j. For this 
purpose, each term of the initial differential equa- 
tion, which corresponds to a certain combination of 
expressions in the left-hand column of the table, 
should be substituted by the corresponding quantity 
located in the right-hand column. The resulting 
algebraic (for the first modification of the algebraic 
method) or differential (for the second modification) 
equation for a diffusion flow should be then refined 
by the method of asymptotic correction. 

with the initial and boundary conditions (45). In equa- 
tions (94) and (45) the dimensionless quantities are 
related to dimensional ones in the following way : 

C Dt x 
c=--, 

G 
t=-p .X=-, 

a 

k = 

where C is the concentration, C, the concentration 
on the wall surface, t the time, D the coefficient of 
diffusion, X the distance to the wall, a the quantity 
which has the dimensional representation of length, 
K the constant of the volumetric chemicai reaction 
rate, W = KF(C) the volumetric reaction rate. 

Differential equations obtained with the aid of the Substituting each term of the differential equation 
second modification of the algebraic method should (94) according to the rules given in Table I for the 
be supplemented with the initial condition : j(0) = co. first modification of the algebraic method yields the 

Now, it will be shown in which way Table 1 of the 
main rules of the algebraic method operation should 
be used for solving specific non-stationary problems. 

5. SOLUTION OF SPECtFlC MASS AND HEAT 

TRANSFER PROBLEMS WITH THE AID OF THE 

ALGEBRAIC METHOD 

5.1. Non-stationary mass exchange between a wall and 
a quiescent medium during a ool~etri~ reaction the 
rate of which depends arbitrarily on concentration 

Consider now a more general, than (44) and (45), 
non-linear problem which is described by 

(94) 



equation for determining the dependence of the 
diffusion flow on time 

1 
-=j “-k. 
z 

The coeflkients of this expression wiil be Mined 
with the use of the asymptotic correction method. In 
the limit T + GD, equation (95) gives 

j, = Jk (T + m). 

At smdl times equation (95) yields 

jo = I/Jr (z 1) O), (97) 

Further, eliminating the parameters k and T from 
equation (95) with the aid of the limiting relations 
(8s) and (Q?), a formula is obtained For a diffusion 
80-S 

j = (jg+ji)‘/2” (98) 

Now, exact asymptotic solutions will be obtained 
for the initial problem (94) and (95) at small and large 
times. When z -+ 0, the second term on the right-hand 
side of equation (94) can be neglected, and this, with 
the initial and boundary conditions (45), leads to the 
well-known distribution of concentration 

c=erfc L!- . 
( ) 2& 

199) 

This expression gives the following relation for a 
diffusion flow : 

j, = (7r?)-“2 (z-+0). (W 

In the other limiting case T 4 as the left-hand side 
of equation (94) is inessential and the corresponding 
asymptotic for j is given by equation (42), 

Substituting relations (42) and (100) into equation 
(98), obtain the sought expression for a diffusion flow 

In specific cases of the first- and second-order reac- 
tions, which correspond tof= cand c2, formula (101) 
was derived by a different technique in ref. [4]. 

In this case the second modification of the algebraic 
method leads, according to Table 1, to the ordinary 
differential equation 

-fg=j2_k 

the solution of which has the form 

j = ,/k{l --exp (-2kr)]-“‘, (1031 

To refine the coefficients of this expression, use is 
made of the asymptotic correction method. When T -P 
co, equation (103) gives asymptotic (96). At small 

times equation (103) yields 

j, = (2r)- V2 (r 4 0). (leer) 

FXG, 2. Comparison of approximate (101), (106) (solid lines 
I, 2). and exact (St) (dashed line) variation of a diBbion 

Row with time for the first-onfer reaction. 

Eliminating the parameters k and r from formula 
(103) by the limiting relations (96) and (104) gives the 
following expression : 

Substituting now the exact asymptotics (42) and 
(100) into equation (105), find the approximare 
dependence of the di~us~on Aow on time 

j= [s(f)) tiz[t -exp (--2nk<f)r)]-I.‘. (lO6) 

Figure 2 presents a comparison of the approximate 
(101) and (106) (solid lines) and exact (51) (a dashed 
line) relations for the first-order reaction (which cor- 
responds to f = c and {f > = l/2). It is seen that 
expression (101) obtained with the use of the t?rst 
rnod~~~t~on of the algebraic method leads to over- 
estimated results as compared with the exact solution. 
The maximum difference of the approximate formula 
(101) from the exact equation ($1) amounts to around 
10%. As follows from Fig. 2, the approximate ex- 
pression (106) derived with the aid of the second 
mod&ation of the algebraic method gives somewhat 
underestimated values as compared with the exact 
result. The error amounts in this case to about 4O/o. 

5.2. Mass and heat transfer in turb&nt frow in the 
t&? i&?t section 

L& us return now to problem (521 and (53) in 
which the longitudinal coordinate serves as the time 
analogue. According to the first modification of the 
method Table 1 (at T = r) gives the following algebraic 
equation for a diffusion ilow : 

I 
-, = *2-e 

Y 
P-GJ * 

Find the asymptotical values of j at smal! and large 
z. 

Taking into account that n > 0, find from 
expression (107) for z + 0 
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j(‘=z-“3 (i-h()). 

In the other limiting case 

(108) 

JCS = o l/n (z -+ 00). (109) 

Eliminating the quantities I and tr in formula (107) 
with the aid of asymptotics (108) and (109) and mak- 
ing simple transformations give the sought algebraic 
equation for a diffusion flow 

f_ j~~-‘-ix = 0. 
(110) 

In accordance with the approach used, the quan- 
tities j,, and j, in equation (1 IO) should be substituted 
by the exact asymptotic solution of the initial problem 
(52) and (53) for z + 0 and z -+ co which are given 
by equations (65) and (32), respectively. As a result, 
obtain 

Now make use of the second modification of the 
algebraic method. According to Table I the partial 
differential equation (52) generates the ordinary 
differential equation 

(112) 

At large z the left-hand side of this equation can be 
neglected. In this case ~lat~onship (109) is preserved 
between the limiting Aow and the parameter tr. At 
small z the asymptotic solution of equation (112) has 
the form 

j, = (32)_ U3 (z -) 0). (113) 

The de~vation of this formula was made taking 
into account condition j(0) = co. 

Expressions (109) and (113) allow equation (112) 
to be written as 

.4 dj a 4-n 
Jodj, =j”-J-J . (114) 

The solution of this equation satisfying the con- 
dition j/jO-, 1 for j0 + co is given by 

1=3 ,mY+ 
s 

(115) 

where the variables y and C are related to diffusion 
flows as 

As usual, the quantities j, and j, should be 
replaced by exact asymptotics which are prescribed 
by formulae (65) and (32). 

To make further calculations, it is necessary to spec- 
ify the value of the exponent n = 3. In this case the 
solution of the cubic equation (110) in variables (116) 
can be written as 

FIG. 3. Diffusion turbulent Row in the tube inlet section 
obtained by using the first (line I. equation (117)) and second 
(line 2, equation (118)) modifications of the algebraic 

method. The dashed line corresponds to relation (61). 

y = (I+(- ‘)’ 3. (117) 

Integrating equation (115) at n = 3 and making 
simple transformations give the following relation : 

y = (1 _e-C)-t~3e U W 

In Fig. 3 solid lines show the results of calculations 
by formulae (I 17) and (118) obtained on the basis of 
the first and second modifications of the algebraic 
method. The dashed line corresponds to relation (61). 

5.3. ~On-~~oIio~or~ heat and mass transfer in turbulent 
~~id~ow~o~~ro~ the tube inlet section 

Analyse the equation 

(119) 

which, together with the initial and boundary con- 
ditions (45), describes the model problem of non- 
stationary heat and mass transfer in turbulent fluid 
flow at a distance from the tube inlet section. 

The use of the first modification of the algebraic 
method for this problem leads to the equation 

I r =j2_bj2-n (120) 

the asymptotic solutions of which at small and large 
times have the form 

j, = l/Jr (z-+0). (121) 

Jm = c 
i/n (5 + 30). (1.22) 

Equation (120) can be rewritten, with the aid of 
expressions (121) and (122), as 

j* -iz jlen -ji = 0. (123) 

Substituting into equation (123) the exact asymp- 
totic solution of problem (119) and (45), i.e. j. and 
j,, which are given by formulae (100) and (32), gives 
the sought equation 

( 1 1 
J 
‘2-c zsin: j2-n-ILS=0. (124) 
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The second modification of the algebraic method 
leads to the differential equation 

1 dj 

-X=’ 
.’ -ej2-“. (125) 

The unbounded solution of equation (125) for r + 
0 is determined by the asymptotic 

j0 = (2~)~ ‘/’ (5 --, 0) (126) 

whereas for 7 -+ 00 equality (122) is valid. 
Equation (125) can be presented, with the aid of 

expressions (122) and (126), in the form 

., dj .3-n 
Jodjo =j’-j”,J . (127) 

The solution of equation (127) with the property 
j/j,, -+ 1 for j0 -) co is determined as 

where y =i. (128) 

Hence, at n = 3 the integration will give 

*2 
‘CO 1 j2+jjip +jk 

x-3 - -In (j-jm)= 

+ -$ arctan 
2j+j, n 

( ) 
j,J3 -J3. (129) 

The exact asymptotics j,, and jm calculated by for- 
mulae (100) and (32) should be substituted into 
expressions (128) and (129). 

5.4. Non-stationary d@iion to a rotating disk 
Now consider the equation 

ac a5 ;-Pay@ (130) 

with initial and boundary conditions (45). 
At m = 1 and 2, problem (130) and (45) describes 

a non-stationary concentration field in the vicinity of 
the forward stagnation point of a bubble and a solid 
particle in a translational Stokes flow at large Peclet 
numbers (the parameter P differs from the Peclet 
number by a numerical factor). To the value n = 2 in 
equation (130) there corresponds a non-stationary 
diffusion to a flat disk rotating with constant angular 
velocity in a viscous incompressible fluid [8] (in this 
case 7 = Dt/a2 and the rest of the dimensionless quan- 
tities are introduced in the same manner as in equation 

(34)). 
Further, without any loss of generality, it will be 

regarded that the parameters m and P in equation 
(130) can take any non-negative values. 

The first modification of the algebraic method (see 
Table 1) leads to the equation 

t +pjlmm =j2 (131) 

the asymptotic solutions of which at small and large 
T are determined by the formulae 

j0 = r- “= (7 -* 0) (132) 

JC.I = pi/W+ 1) (7 + co). (133) 

Eliminating the parameters 7 and P from relations 
(131)-(133) yields 

j'_j~"j'-"_ji =O. (134) 

Substituting into this equation the exact asymp 
totics j,, and j, which are obtained when studying 
problem (130) and (45) and which are given by 
expressions (100) and (41), find the sought algebraic 
equation for a diffusion flow 

(135) 

In the specific cases of m = 0 and 1 the solutions of 
the quadratic equation (135) have the form 

(at m = 0) (136) 

(at m = 1) (137) 

and the value m = 2 corresponds to the cubic equation 

j3-(nr)-‘i2j-9[r(1/3)]-‘P = 0 (at m = 2). 

(138) 

The second modification of the algebraic method 
in the case considered gives the ordinary differential 
equation 

-! d/ +pjl-m = j2 
j dr (139) 

the asymptotic solutions of which at small and large 
times are prescribed by formulae (126) and (133), 
respectively. With the above being taken into account, 
represent equation (139) in the following form : 

.3 dj WI+ I .2-m 
JoG=j3-Jm J . (140) 

The solution of equation (140) is determined by 
formula (128) where it should be assumed that 
n = m+ 1. After this, the exact asymptotics j, and j,, 
which are given by expressions (100) and (41), should 
be substituted. As a result, the procedure described 
and integration will give 

7= --$j[$+ln(l-$)I (atm=O) (141) 

[l-exp (-2Pr)]-“’ (at m = 1). 

(142) 
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Here the relation j =j(r) at m = 0 is written in an 
implicit form. At m = 2, the solution of the equation is 
given by equality (129), where j,, and j, are calculated 
from formulae (100) and (41). 

It is important to note that at m = 1 formula (142) 
is exact (this follows from the results of ref. [2]). This 
very pleasant fact has a much more general character. 
Namely, it can be shown that the second modification 
of the algebraic method always leads to an accurate 
result when the solution of a non-stationary problem 
is self-similar and can be presented in the form 
c = c(x/6), where 6 = 6(r) is some function of time. 

Now, an approximate solution of problem (130) 
and (45) will be constructed by another technique. 
For this purpose, the Laplace-Carson transform (46) 
will be used. As a result, the concentration image E 
will be given by 

Z- 

~.P~&p~=O (143) 

with boundary conditions (48). 
With the use of the algebraic method, the equation 

for the diffusion flow imagejis derived as 

i’ -py-m-p = 0 (14) 

the asymptotic solutions of which are 

j0 = pliW+ 1) UPI + 0) ; L = JAI!4 -) co)* 

(145) 

Eliminating the parameters P and p from equations 
(144) and (145) gives 

;2 _;;+mjl-m -7% = 0. 
(146) 

It can be easily shown that the exact solution of 
problem (143) and (48) leads to the asymptotics 

i;l = trn+ i)m/(m+ 1) [r(..&)j-Ip""'? 

;a = Jp. (147) 

Substitution into equation (146) gives 

f-(m+l)m r -& I( )I -m-‘p,q-m-p ~0. 

(148) 

Solution of equation (148) at m = 0 and 1 and 
application of the reverse Laplace-Carson transform 
yield the following expressions for a diffusion flow : 

j=G+gerf PJT 
( > 

+-&exp -Tr ( > (at m = 0) (149) 

FIG. 4. Comparison of the exact (dashed line, equation (149)) 
and approximate (solid lines I and 2, equations (136) and 
(141)) expressions for diffusion flows corresponding to the 

solution of problem (130) and (45) at m = 0. 

2P +&jexp K ( > ---5 (at m - = 1). (150) 

It is important to note that formula (149), obtained 
by an approximate method is exact. 

Figure 4 presents a comparison of the exact, (149) 
(a dashed line), and approximate, (136) and (141) 
expressions for a diffusion flow which corresponds to 
the solution of problem (130) and (45) at m = 0. It is 
seen that the approximate formula (136) obtained 
with the use of the first modification of the algebraic 
method gives overestimated values as compared with 
the exact formula (149), the maximum error in this 
case is 5.5%. The difference of the approximate 
expression (141), which is a consequence of the use of 
the second modification of the algebraic method, from 
the exact one is around 10%. 

Figure 5 shows the dependence of the diffusion 
flow on time which corresponds to the approximate 
formula (137) (solid line 1) derived at m = 1 by the 
first modification of the algebraic method; also given 
is curve (142) (solid line 2) obtained with the use of 
the second modification of the method. As was noted 
above, in this case expression (142) coincides with the 
exact solution. It is seen that the maximum difference 
of the approximate formula (137) (due to which there 
are overestimated values) is rather great and amounts 
to about 14%. The dashed line corresponds to the 
approximate relation (150) the maximum error of 
which is equal to 4%. 

5.5. Convective mass transfer to a flat plate with a 
simultaneous volumetric reaction 

Consider stationary convective diffusion to the flat 
plate surface in the translational viscous incom- 
pressible fluid flow at large Reynolds numbers (Blau- 
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FIG. 5. Relationship between a diffusion flow and time 
obtained by solving problem (130) and (45) at m = 1. Line 
1 corresponds to equation (137). Line 2 (accurate result) 
corresponds to formula (142), the dashed line corresponds 

to formula (150). 

sius Row). It is assumed that mass transfer is com- 
pounded with a volumetric reaction. In the diffuse 
boundary layer approximation a corresponding prob- 
lem on con~nt~tion is described by the equation and 
boundary conditions 

1.33 x e+ 1.33 X* dc a*c 
-q-yin& -igI3/2;j; ax2 = - -kf(c) (151) 

z=o,c=o; x=O,c=l; x+co,c-ao. 

W) 
Here, the dimensionless quantities are introduced by 
the formulae 

Z x c D2Py”’ 

2=--, 
a 

X=-, 
a 

c=-, 

G 
a=r, 

where U, is the unperturbed velocity far from the 
plate, X the distance to the plate surface, Z the dis- 
tance from the leading edge along a plate. 

For convenient, equations (I 5 1) and (152) will be 
replaced by the new variable 

y = xz- ‘:4. 

This yields a simpler equation 

(153) 

1.33 y at 
---=&$-, 

4 z”4 at 

with boundary conditions 

x=0, c= 0; y=o,c= 1; ~-+cc,C-tO. 

in the parabolic equation (154) the role of the time 

variable is played by z. The unknown quantities 
j= -(&/ax), _ ,, and J = - (dc/dy), _ 0, which cor- 
respond to problem (151), (152) and (154), (53), are 
related as 

J= Z't4j. (15% 

With the use of the first modification of the 
algebraic method (in Table 1 x, z, j should be sub- 
stituted by y, z, J) expression (154) yields 

which, by virtue of equation (I Xi), gives the equation 
for a diffusion flow 

j3-kj-zm3/* =:(). 
(1.56) 

Taking into account the fact that the asymptotic 
solutions of this equation are determined by 

j. = 2 -“* (z-0); jm = k”’ (z+ 00) (157) 

equation (156) will be presented in the following 
form : 

j'-j:j-ji E 0. * (158) 

In accordance with the ideas of the algebraic 
method, not equation (157) but exact asymptotic solu- 
tions of the initial problem (151) and (152) for z -+ 0 
[7] and z + cc should be substituted into equation 

(IS@ 

j, = 0.3992- “‘, j, = (2&f)) ‘/2. (159) 

The above procedure gives 

j3-2k(f>j-(0.399)3z-~12 = 0. (160) 

Note that for the first-order reaction cfl= c, 
f = l/2) an analogous equation was derived by a 
different technique in ref. [4]. 

According to the second modification of the 
algebraic method, equation (154) generates the ordi- 
nary differential equation 

1 dJ 
---_=-$J'-k 

zlt4J2 dz (161) 

which, with regard for equation (155), can be re- 
written as 

---&i(zif4&=j2-k. (162) 

The asymptotic solutions of this equation have the 
form 

j0 = 2-?!z-1/2 (z -P 0); jm = k't2 (z + a). 

(163) 

Eliminating z and k from expression (162) with the 
aid of (163) gives 

dj 1j j2(j2 -ii) 
dj,=2j,+ Jo ' uw 
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The sought equation for a diffusion flow is obtained 
by substituting into equation (164) the exact asymp- 
totics (159) 

d.i i 
dz= x+ 

j2W(f > -j’)Jz 

2(0.399)’ ’ (16% 

5.6. Mass transfer in turbulent pow in the tube iniet 
section with a simultaneous volumetric reaction 

Analyse the following equation : 

When z -+ 0, the asymptotic solution of equation 
(171) has the form of equation (113). 

Eliminating the coordinate z from equation (171) 
with the aid of equation (113) gives 

(172) 

Substituting the corresponding exact asymptotic 
(65) into equation (172), the following equation can 
be derived : 

_I 

.$ = ;$l+oY’)E -kf(c) (166) 9 dj 

01)z= 
which is a natural generalization of equations (23) 
and (52). In combination with boundary conditions 
(53), it describes mass transfer in turbulent flow in 
the tube inlet section with a simultaneous volumetric 
reaction. 

The first modification of the algebraic method leads 
to the equation 

1 
--. =I 
ZJ 

'I_bj2-n-k (167) 

the coefficients of which should be refined by the 
asymptotic correction method. 

At a distance from the inlet section for z -P cc equa- 
tion (168) changes over equation (26) which, after 
refinement of the coefficients (by studying the limiting 
cases k + 0 and k + oo), is reduced to the form of 
equation (33). This makes it possible, instead of equa- 
tion (167), to write directly 

(168) 

At small z the asymptotic of equation (168) is deter- 
mined by formula (108) thus allowing equation (168) 
to be presented in the form 

j3-" -2k(f)j-ji = 0. (169) 

Finally, taking into account the fact that the exact 
asymptotic solution of problem (166) and (52) leads 
to expression (65), obtain the equation 

3 1 

-[ro1”;=O 

(170) 

which in the limiting cases z = co and k = 0 changes 
over to equations (33) and (11 l), respectively. 

According to rule (88), the second modification of 
the algebraic method instead of equation (168) gives 
the following ordinary differential equation : 

(171) 

which changes over to equation (33) for z -+ 00. 

+2k(f)j’. (173) 

Remark 3. When constructing an approximate 
equation for a diffusion flow (by any modification 
of the algebraic method) it is convenient to use the 
following technique. Each term of the initial partial 
differential equation is replaced by the quantity taken 
from the right-hand column of Table 1 and multiplied 
by some constant. These unknown constants, which 
will occur in the resulting approximate equation, are 
then calculated on the basis of an additional asymp- 
totic study of the initial non-stationary problem in 
some limiting cases. (A similar technique was used in 
ref. [4] where approximate equations for diffusion 
tlows were derived intuitively.) 

For example, acting in such a manner according to 
the first modification of the method, the following 
equation will be obtained in the latter problem instead 
of equation (167) : 

E$,= j2-A~j2-n-Bk (174) 

where A, B, E are unknown constants. 
Assume now simultaneously in equation (174) that 

k = 0 and z = co. This will give 

j = A l/“b Iin. (175) 

The corresponding exact asymptotic solution of prob- 
lem (166) and (53) is given by formula (32). Equating 
expressions (175) and (32) determines the constant A 

. (176) 

For z= co and k 4 co it follows from equation 
(174) that 

j= B’/2kI/2. (177) 

Comparison of the quantity with the corresponding 
exact asymptotic (42) yields for the coefficient B 

B = 2k(f). (178) 

When z + 0, equation (174) yields 

j = El/3z-‘/3. (179) 

Taking into account the fact that in this limiting case 
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the exact asymptotic is given by formula (65), it is Now, by substituting constants (176) (178) and 

possible to find the constant (183) into equation (181) one obtains equation (173). 

E = 3[I-(l/3)]-3. (180) 

Substituting constants (176), (178) and (180) into I. 
equation ( 174), in the long run yields equation (170). 

Acting in a similar fashion, the second modification 
of the algebraic method will give, instead of equation 2. 
(174), the following equation : 

As before, the unknown constants A and B are 
found from the analysis of the limiting cases z = co, 
k = 0 and z = cc, k + 00 and are determined by for- 4’ 
mulae (176) and (178). When z -, 0, it follows from 
equation (181) that 

5. 
j = H”3(34_ ‘/3. (182) 

6. 

An exact asymptotic corresponding to the solution of 
problem (166) and (53) for z --c 0 is given by , 
expression (65). Equating expressions (182) and (65) ’ 
yields the constant 8. 

H = 9[l-(l/3)]-‘. (183) 
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METHODE ALGEBRIQUE POUR LES PROBLEMES DE TRANSFERT DE CHALEUR 
ET DE MASSE 

RCum&--Qn pr&ente une nouvelle methode analytique apptochee pout ttaitet les ptoblemes de ttansfett 
de chaleut et de masse et obtenit des equations algbbriques simples pout les ecoulements diffusionnels 
(thermiques) et des nombtes de Sherwood moyens. Les ptobltmes consider&s concement le ttansfert de 
masse pout un diique toumant, une plaque dans le sens de l’ecoulement, une gouttelette spherique et une 
particuie solide au tours d’une t&action volumitrique dont la vitesse est fonction de la concentration. On 
kudie l’echange variable de masse entre une paroi et le milieu au repos, pour une &action sirnultan&s d’ordre 
queiconque. Sont anaiys& le transfert de chaleut et de masse dans un &Coulement turbulent fi l’entn5e du 

tube, et d’autres ptobltmes analogues. 

EKNE ALGEBRAISCHE METHODE ZUR LOSUNG VON WARME- UrrND 
STOFFOBERTRAGUNGSPROBLEMEN 

Z~mmenf~~Es wird eine neue analytische N~he~ngsmeth~e rut Untetsuchung von W&me- und 
StofRibetttagungsptoblemen votgestelit, die es ermiiglicht, thermische Diffusionssttomungen und mittiete 
Sherwood-Zahlen mit einfachen algebraischen Gleichungen zu beschteiben. Es k&men Ptobleme gelost 
wetden, die beim konvektiven StoKiibetgang an einet totietenden Scheibe auftreten. an einet 1Pnas anne- 
sttcimten Platte, an einem kugelfiirmigen Tropfchen und an einetn festen Teilchen in Abhfngigk& eider 
volumetrischen Reaktion, deten Intensitit beliebig konzenttationsabhringig sein kann. Es witd der insta- 
tio&e Stoffaustausch zwischen einet Wand und einem ruhenden Fluid bei einet gleichzeitig auftretenden 
volumet~~hen Reaktion beiiebiget Otdnung untetsucht. Es witd det W&me- und Sto~austau~h im 

EinlaBbereich eines turbulent dutchsttemten Rohres sowie Lhnlichet Ptobleme untersucht. 

AJIl-EEjPAHgECKM&i METOA HCCJIE&OBAH&i% 3A&49 MACCO- M TEl-InOIIEPEHOCA 

ups upoTeXamn o6sexnoP peatam& CKOpomb SOTOpo~ npoE3Bo~ o6paaoM ~HCstT OT LOXteRT- 
paaim. Hccnenoaan uecrannonapnbdt MBCCOOBMCR cream c ~enonmi~~oti cpeao& oc~~o~crrabrit 
O~UMHO~ peau.meti 3no6oro nopfum. Ana~~~npy~~mi T~MO- II ~a~conepenoc npri ryp6ynenrnor.i 

lXXem?n RB BXOIIXOM ySame T&Q&d B Jlpyl-~E 3iiJW3B TaXOr TBRR. 


